精英家教网 > 高中数学 > 题目详情

(本小题12分) 二次函数f(x)满足且f(0)=1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)在区间上求y= f(x)的值域。

解:.1设f(x)=ax2+bx+c,由f(0)=1得c=1,故f(x)=ax2+bx+1.
∵f(x+1)-f(x)=2x,∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x.
即2ax+a+b=2x,所以,∴f(x)=x2-x+1.    2. 

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

函数的定义,且满足对任意
有:
的值。
判断的奇偶性并证明
如果,且上是增函数,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)某网民用电脑上因特网有两种方案可选:一是在家里上网,费用分为通讯费(即电话费)与网络维护费两部分。现有政策规定:通讯费为0.02元/分钟,但每月30元封顶(即超过30元则只需交30元),网络维护费1元/小时,但每月上网不超过10小时则要交10元;二是到附近网吧上网,价格为1.5元/小时。
(1)将该网民在某月内在家上网的费用(元)表示为时间(小时)的函数;
(2)试确定在何种情况下,该网民在家上网更便宜?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)函数的定义域为为实数).
(1)当时,求函数的值域;
(2)若函数在定义域上是减函数,求的取值范围;
(3)函数上的最大值及最小值,并求出函数取最值时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数在定义域上为增函数,且满足

(1)求的值           (2)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)某公司生产一种产品的固定成本为0.5万元,但每生产100件需再增加成本0.25万元,市场对此产品的年需求量为500件,年销售收入(单位:万元)为R(t)=5t-(0≤t≤5),其中t为产品售出的数量(单位:百件).
(1)把年利润表示为年产量x(百件)(x≥0)的函数f(x);
(2)当年产量为多少件时,公司可获得最大年利润?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数为偶函数.
(Ⅰ) 求的值;
(Ⅱ) 若方程有且只有一个根, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

曲线y=在点M处的切线的斜率为(   )

A.-B.C.-D.

查看答案和解析>>

同步练习册答案