精英家教网 > 高中数学 > 题目详情

(14分)某公司生产一种产品的固定成本为0.5万元,但每生产100件需再增加成本0.25万元,市场对此产品的年需求量为500件,年销售收入(单位:万元)为R(t)=5t-(0≤t≤5),其中t为产品售出的数量(单位:百件).
(1)把年利润表示为年产量x(百件)(x≥0)的函数f(x);
(2)当年产量为多少件时,公司可获得最大年利润?

解:(1)当0≤x≤5时,f(x)=R(x)-0.5-0.25x
=-x2+4.75x-0.5;当x>5时,
f(x)=R(5)-0.5-0.25x=12-0.25x,
故所求函数解析式为
(2)0≤x≤5时,f(x)=-(x-4.75)2+10.78125,
∴在x=4.75时,f(x)有最大值10.78125,
当x>5时,f(x)=12-0.25x<12-0.25×5=10.75<10.78125,
综上所述,当x=4.75时,f(x)有最大值,即当年产量为475件时,公司可获得最大年利润.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数.
(I)当时,若方程有一根大于1,一根小于1,求的取值范围;
(II)当时,在时取得最大值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数满足,且上单调递增.
(1)求的解析式;
(2)若在区间上的最小值为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分) 二次函数f(x)满足且f(0)=1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)在区间上求y= f(x)的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知奇函数的定义域为,且上是增函数, 是否存在实数使得, 对一切
都成立?若存在,求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=loga[(-2)x+1]在区间[1,2]上恒为正,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

,则等于(  )

A.-1 B.-2 C.1 D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若定义在R上的函数f(x)的导函数为,且满足,则的大小关系为(  ).

A.< B.=
C.> D.不能确定

查看答案和解析>>

同步练习册答案