精英家教网 > 高中数学 > 题目详情

(12分)已知函数满足,且上单调递增.
(1)求的解析式;
(2)若在区间上的最小值为,求实数的值.

解:(1),故
上单调递增

故:,于是

(2),故
对称轴为.下面分情况讨论对称轴与区间的位置关系:
,(舍去);
②当
③当
综上可得,满足题意的

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数
(1)若的定义域和值域均是,求实数的值;
(2)若对任意的,总有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)某网民用电脑上因特网有两种方案可选:一是在家里上网,费用分为通讯费(即电话费)与网络维护费两部分。现有政策规定:通讯费为0.02元/分钟,但每月30元封顶(即超过30元则只需交30元),网络维护费1元/小时,但每月上网不超过10小时则要交10元;二是到附近网吧上网,价格为1.5元/小时。
(1)将该网民在某月内在家上网的费用(元)表示为时间(小时)的函数;
(2)试确定在何种情况下,该网民在家上网更便宜?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数f(x)=2x.
(1)若f(x)=2,求x的值;
(2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)函数的定义域为为实数).
(1)当时,求函数的值域;
(2)若函数在定义域上是减函数,求的取值范围;
(3)函数上的最大值及最小值,并求出函数取最值时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)某公司生产一种产品的固定成本为0.5万元,但每生产100件需再增加成本0.25万元,市场对此产品的年需求量为500件,年销售收入(单位:万元)为R(t)=5t-(0≤t≤5),其中t为产品售出的数量(单位:百件).
(1)把年利润表示为年产量x(百件)(x≥0)的函数f(x);
(2)当年产量为多少件时,公司可获得最大年利润?

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

函数的图象如图所示,且处取得极值,给出下列判断:



③函数在区间上是增函数。
其中正确的判断是(   )

A.①③ B.② C.②③ D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算下列各式
(Ⅰ) 
(Ⅱ)

查看答案和解析>>

同步练习册答案