如图,在直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,且AA1=AD=DC=2,M∈平面ABCD,当D1M⊥平面A1C1D时,DM=________.
![]()
科目:高中数学 来源: 题型:
已知正三棱柱ABC-A′B′C′的正视图和侧视图如图所示.设△ABC,△A′B′C′的中心分别是O,O′,现将此三棱柱绕直线OO′旋转,在旋转过程中对应的俯视图的面积为S,则S的最大值为________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
已知m、n是两条直线,α、β是两个平面,给出下列命题:①若n⊥α,n⊥β,则α∥β;②若平面α上有不共线的三点到平面β的距离相等,则α∥β;③若n、m为异面直线,n⊂α,n∥β,m⊂β,m∥α,则α∥β.其中正确命题的个数是( )
A.3个 B.2个
C.1个 D.0个
查看答案和解析>>
科目:高中数学 来源: 题型:
设两个平面α、β,直线l,下列三个条件:①l⊥α;②l∥β;③α⊥β.若以其中两个作为前提,另一个作为结论,则可构成三个命题,这三个命题中正确命题的个数为( )
A.3 B.2
C.1 D.0
查看答案和解析>>
科目:高中数学 来源: 题型:
在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,下面四个结论中不成立的是( )
A.BC∥平面PDF B.DF⊥平面PAE
C.平面PDF⊥平面ABC D.平面PAE⊥平面ABC
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在几何体ABCDE中,AB=AD=2,AB⊥AD,AE⊥平面ABD.M为线段BD的中点,MC∥AE,AE=MC=
.
![]()
(1)求证:平面BCD⊥平面CDE;
(2)若N为线段DE的中点,求证:平面AMN∥平面BEC.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图所示的七面体是由三棱台ABC-A1B1C1和四棱锥D-AA1C1C对接而成,四边形ABCD是边长为2的正方形,BB1⊥平面ABCD,BB1=2A1B1=2.
(1)求证:平面AA1C1C⊥平面BB1D;
(2)求二面角A-A1D-C1的余弦值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com