已知,求下列各式的值:
(Ⅰ);
(Ⅱ).
(Ⅰ)-;(Ⅱ)
解析试题分析:(Ⅰ)依题意可得tan α=.所以可以将的分子分母都同时除以.即可转化为正切值的问题.从而求得结论.
(Ⅱ)首先利用诱导公式将原式化为sin2α+sin αcos α+2.这式是一个二次的形式.将该式除以1.即由1=.再该分式的分子分母同时除以即可得到关于正切值的式子.再将正切值代入即可得到结论.本题主要是考查弦化为切的运算其中一种已是分式的形式,另一种则没有分母需要构造.
试题解析:由已知得tanα=.
(1)原式===-.
(2) 原式=sin2α+sin αcos α+2=sin2α+sin αcos α+2 (cos2α+sin2α)
====.
考点:1.弦化切的知识.2.1的转化.3.二倍角公式的应用.
科目:高中数学 来源: 题型:解答题
已知真命题:“函数的图像关于点成中心对称图形”的充要条件为“函数是奇函数”.
(Ⅰ)将函数的图像向左平移个单位,再向上平移2个单位,求此时图像对应的函数解析式,并利用题设中的真命题求函数图像对称中心的坐标;
(Ⅱ)求函数图像对称中心的坐标;
(Ⅲ)已知命题:“函数 的图像关于某直线成轴对称图像”的充要条件为“存在实数和,使得函数 是偶函数”.判断该命题的真假,如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知向量m=(2sinx,cosx),n=(cosx,2cosx),定义函数f(x)=m·n-1.
(1)求函数f(x)的最小正周期;
(2)确定函数f(x)的单调区间、对称轴与对称中心.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com