精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-4x,x∈[-2,2].有以下命题:
①x=±1处的切线斜率均为-1; 
②f(x)的极值点有且仅有一个;
③f(x)的最大值与最小值之和等于零.
则下列选项正确的是(  )
分析:先根据已知函数f(x)=x3-4x,x∈[-2,2].欲求切线斜率,只须先利用导数求出在x=±1处的导函数值,再结合导数的几何意义即可求出切线的斜率,从而判断①,由此得到①是真命题;对函数进行求导数运算,可得在区间[-2,2]上导数有两个零点,函数也就有两个极值点,故②为假命题;根据函数为奇函数,结合奇函数的图象与性质可得f(x)的最大值与最小值之和为零,故③为真命题.由此可得正确答案.
解答:解:∵函数f(x)=x3-4x,x∈[-2,2].
对函数求导数,得f'(x)=3x2-4,
因此曲线f(x)=x3-4x,在x=±1处的切线斜率等于3(±1)2-4=-1,
故①是真命题;
对于②,因为f'(x)=3x2-4=3(x+
2
3
3
)(x-
2
3
3
),f'(x)在区间[-2,2]上有两个零点,
故f(x)的极值点有两个,得②为假命题;
对于③,因为函数f(x)=x3-4x是奇函数,所以若它在[-2,2]上的最大值为f(m)=M,则它在[-2,2]上的最小值必为f(-m)=-M,
所以f(x)的最大值与最小值之和为零,③是真命题.
则下列选项正确的是:①③.
故选B.
点评:本题以命题真假的判断为载体,着重考查了导数的几何意义、用导数切线的斜率和函数极值的求法等知识点,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案