精英家教网 > 高中数学 > 题目详情
9.函数y=4cos(2016x)-e|2016x|(e为自然对数的底数)的图象可能是(  )
A.B.C.D.

分析 先判断函数的奇偶性以及特殊值即可判断.

解答 解:设y=f(x),
则f(-x)=4cos[2016(-x)]-e|2016(-x)|=4cos(2016x)-e|2016x|=f(x),
∴y=f(x)为偶函数,故排除B、D,
又f(0)=4-1=3>0,
故选:A.

点评 本题考查了函数图象的识别,关键是掌握函数的奇偶性,以及函数值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,输出S的值为8,则n的最小正整数为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.为应对我国人口老龄化问题,某研究院设计了延迟退休方案,第一步:2017年女干部和女工人退休年龄统一规定为55岁;第二步:从2018年开始,女性退休年龄每3年延迟1岁,至2045年时,退休年龄统一规定为65岁,小明的母亲是出生于1964年女干部,据此方案,她退休的年份是2020年.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列{log3(an-1)}(n∈N*)的前n项和为Sn,且a2=10,S7=28.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{1}{{{a_{n+1}}-{a_n}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.复数($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2014的共轭复数是(  )
A.-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$iB.-$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$iC.$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$iD.$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=xlnx+mx,且曲线y=f(x)在点(1,f(1))处的切线斜率为1.
(1)求实数m的值;
(2)设g(x)=f(x)-$\frac{a}{2}$x2-x+a(a∈R)在其定义域内有两个不同的极值点x1,x2,且x1<x2,已知λ>0,若不等式e1+λ<x1•x2λ恒成立,求λ的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知圆C:(x-3)2+(y-5)2=5,过圆心C的直线l交圆C于A,B两点,交y轴于点P.若$\overrightarrow{PA}$=$\frac{1}{4}$$\overrightarrow{AB}$,则直线l的方程为(  )
A.x-2y+7=0B.x+2y-13=0或x-2y+7=0
C.x+2y-13=0D.x+2y+7=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x+1,x≥0}\\{{2}^{x},x<0}\end{array}\right.$,若f(a)=3,则a=4.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(理)试卷(解析版) 题型:解答题

分别是椭圆的左右焦点,上一点,且轴垂直,直线的另一个交点为

(1)若直线的斜率为,求的离心率;

(2)若直线轴上的截距为2,且,求椭圆的方程.

查看答案和解析>>

同步练习册答案