精英家教网 > 高中数学 > 题目详情
10.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,点E、F、G分别为棱AB、BC、PD的中点,平面AEG与线段PC、PF、PB分别交于点H、I、J,且PA=AD=2.
(1)证明:AE∥GH;
(2)求直线EF与平面AEG所成角的大小,并求线段PI的长度.

分析 (1)由AB∥平面PCD即可得出AB∥GH;
(2)以A为原点建立坐标系,求出$\overrightarrow{EF}$和平面AEG的法向量$\overrightarrow{n}$,则直线EF与平面AEG所成角的正弦值为|cos<$\overrightarrow{EF},\overrightarrow{n}$>|,设$\overrightarrow{PI}$=$λ\overrightarrow{PF}$,则$\overrightarrow{n}$$•\overrightarrow{AI}$=0,列方程解出λ.

解答 证明:(1)∵四边形ABCD是正方形,
∴AB∥CD,又CD?平面PCD,AB?平面PCD,
∴AB∥平面PCD,
又AB?平面AEG,平面AEG∩平面PCD=GH,
∴AB∥GH.
(2)以A为原点,以AB,AD,AP为坐标轴建立坐标系,如图所示:
则A(0,0,0),E(1,0,0),F(2,1,0),G(0,1,1),
∴$\overrightarrow{EF}$=(1,1,0),$\overrightarrow{AE}$=(1,0,0),$\overrightarrow{AG}$=(0,1,1),
设平面AEG的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AE}=0}\\{\overrightarrow{n}•\overline{AG}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x=0}\\{y+z=0}\end{array}\right.$,令z=1,得$\overrightarrow{n}$=(0,-1,1)
∴cos<$\overrightarrow{EF},\overrightarrow{n}$>=$\frac{\overrightarrow{EF}•\overrightarrow{n}}{|\overrightarrow{EF}||\overrightarrow{n}|}$=$\frac{-1}{\sqrt{2}•\sqrt{2}}$=-$\frac{1}{2}$,
∴EF与平面AEG所成角的正弦值为$\frac{1}{2}$,
∴EF与平面AEG所成角为30°.
P(0,0,2),$\overrightarrow{PF}$=(2,1,-2),$\overrightarrow{PA}$=(0,0,-2)
设$\overrightarrow{PI}$=λ$\overrightarrow{PF}$=(2λ,λ,-2λ),则$\overrightarrow{AI}$=$\overrightarrow{PI}-\overrightarrow{PA}$=(2λ,λ,2-2λ),
∵AI?平面AEG,∴$\overrightarrow{n}•\overrightarrow{AI}=0$,
∴-λ+2-2λ=0,解得λ=$\frac{2}{3}$.
∴PI=$\frac{2}{3}$PF=$\frac{2}{3}×$$\sqrt{4+1+4}$=2.

点评 本题考查了线面平行的判定与性质,空间向量与线面角的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,在三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=3,AB=$\frac{3}{2}$,BE=$\frac{1}{2}$EC,AD=2DC.
(1)证明:DE⊥平面PAE;
(2)求二面角A-PE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,某几何体的正视图和侧视图都是正三角形,俯视图是圆,若该几何体的表面积S=π,则它的体积V=(  )
A.πB.$\frac{π}{3}$C.$\frac{π}{9}$D.$\frac{π}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=ln(mx+1)-2(m≠0).
(1)讨论f(x)的单调性;
(2)若m>0,g(x)=f(x)+$\frac{4}{x+2}$存在两个极值点x1,x2,且g(x1)+g(x2)<0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.2016年1月1日起全国统一实施全面二孩政策,为了解适龄民众对放开生育二孩政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如表:
  生二胎 不生二胎 合计
 70后 30 1545 
 80后 45 1055
 合计 75 25100
(1)根据调查数据,是否有95%以上的把握认为“生二胎与年龄有关”,并说明理由;
(2)以这100个人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中随机抽取3位,记其中生二胎的人数为X,求随机变量X的分布列及数学期望和方差.
参考数据:
P(K2>k) 0.15 0.10 0.05 0.25 0.010 0.005
 k 2.072 2.706 3.841 5.024 6.6357.879
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,是一个几何体的三视图,其中正视图是等腰直角三角形,侧视图与俯视图均为边长为1的正方形,则该几何体外接球的表面积为3π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某几何体的三视图如图所示,则该几何体的体积为(  )
A.B.12πC.18πD.24π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数y=$\frac{{9x}^{2}+6x+1}{{x}^{2}+1}$,求该函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.(-x)2$\sqrt{-\frac{1}{x}}$等于(  )
A.$\sqrt{x}$B.-x$\sqrt{-x}$C.x$\sqrt{x}$D.x$\sqrt{-x}$

查看答案和解析>>

同步练习册答案