精英家教网 > 高中数学 > 题目详情
4.如图,PC是⊙O的切线,C为切点,PAB为割线,PC=2,PA=1,∠P=60°,则BC=(  )
A.3B.2C.3$\sqrt{2}$D.2$\sqrt{3}$

分析 利用切割线定理,求出PB,△PBC中,利用余弦定理求BC.

解答 解:∵PC是⊙O的切线,C为切点,PAB为割线,PC=2,PA=1,
∴4=1×PB,
∴PB=4,
△PBC中,BC=$\sqrt{4+16-2×2×4×\frac{1}{2}}$=2$\sqrt{3}$.
故选:D.

点评 本题考查切割线定理,余弦定理,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.两个相关变量满足如下关系:两变量的回归直线方程为(  )
x1015202530
y1 0031 0051 0101 0111 014
A.$\stackrel{∧}{y}$=0.63x-231.2B.$\stackrel{∧}{y}$=0.56x+997.4C.$\stackrel{∧}{y}$=50.2x+501.4D.$\stackrel{∧}{y}$=60.4x+400.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{m}$=(sin$\frac{x}{3}$,-1),$\overrightarrow{n}$=($\frac{\sqrt{3}}{2}$A,$\frac{1}{2}$Acos$\frac{x}{3}$)(A>0),函数f(x)=$\overrightarrow{n}$•$\overrightarrow{m}$的最大值为2.
(1)求f(x)最小正周期和解析式;
(2)设α,β∈[0,$\frac{π}{2}$],f(3α+$\frac{π}{2}$),f(3β+2π)=$\frac{6}{5}$,求sin(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.(x2+x+y)4的展开式中,x3y2的系数是12.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.以集合A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是$\frac{5}{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知过点$P({-2\sqrt{3},-2})$的直线l与圆O:x2+y2=4有公共点,则直线l斜率的取值范围是$[{0,\sqrt{3}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.等差数列{an}中,$\frac{{a}_{11}}{{a}_{10}}$<-1,且其前n项和Sn有最小值,以下命题正确的是①③⑤.
①公差d>0; ②{an}为递减数列; ③S1,S2…S19都小于零,S20,S21…都大于零;④n=19时,Sn最小;⑤n=10时,Sn最小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,且PA⊥l,A为垂足,如果直线AF的斜率为-1,则|PF|等于(  )
A.2B.4C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{BC}$=$\overrightarrow{BC}$•$\overrightarrow{CA}$=$\overrightarrow{CA}$•$\overrightarrow{AB}$,则该三角形是(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

同步练习册答案