【题目】设F是椭圆C:
(a>b>0)的一个焦点,P是椭圆C上的点,圆x2+y2=
与线段PF交于A,B两点,若A,B三等分线段PF,则椭圆C的离心率为( )
A.
B.![]()
C.
D.![]()
【答案】D
【解析】
取线段PF的中点H,连接OH,OA,由题意可得OH⊥AB,设|OH|=d,根据椭圆的定义以及在Rt△OHA中,可得a=5d,在Rt△OHF中,利用勾股定理即可求解.
如图,取线段PF的中点H,连接OH,OA.
设椭圆另一个焦点为E,连接PE.
∵A,B三等分线段PF,∴H也是线段AB的中点,即OH⊥AB.
设|OH|=d,则|PE|=2d,|PF|=2a-2d,|AH|=
.
在Rt△OHA中,|OA|2=|OH|2+|AH|2,解得a=5d.
![]()
在Rt△OHF中,|FH|=
,|OH|=
,|OF|=c.
由|OF|2=|OH|2+|FH|2,
化简得17a2=25c2,
.
即椭圆C的离心率为
.
故选:D.
科目:高中数学 来源: 题型:
【题目】下列有关命题的说法错误的是( )
A.若“p∨q”为假命题,则p,q均为假命题
B.“x=1”是“x≥1”的充分不必要条件
C.“sinx=
”的必要不充分条件是“x=
”
D.若命题p:x0∈R,x02≥0,则命题¬p:x∈R,x2<0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列五个命题:
①“
”是“
为R上的增函数”的充分不必要条件;
②函数
有两个零点;
③集合A={2,3},B={1,2,3},从A,B中各任意取一个数,则这两数之和等于4的概率是
;
④动圆C即与定圆
相外切,又与y轴相切,则圆心C的轨迹方程是
⑤若对任意的正数x,不等式
恒成立,则实数
的取值范围是
其中正确的命题序号是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=a
+bx-a-ab(a≠0),当
时,f(x)>0;当
时,f(x)<0.
(1)求f(x)在
内的值域;
(2)若方程
在
有两个不等实根,求c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
是衡量空气污染程度的一个指标,为了了解
市空气质量情况,从
年每天的
值的数据中随机抽取
天的数据,其频率分布直方图如图所示.将
值划分成区间
、
、
、
,分别称为一级、二级、三级和四级,统计时用频率估计概率 .
![]()
(1)根据
年的数据估计该市在
年中空气质量为一级的天数;
(2)如果
市对环境进行治理,经治理后,每天
值
近似满足正态分布
,求经过治理后的
值的均值下降率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的参数方程为
(
为参数),
,
为曲线
上的一动点.
(I)求动点
对应的参数从
变动到
时,线段
所扫过的图形面积;
(Ⅱ)若直线
与曲线
的另一个交点为
,是否存在点
,使得
为线段
的中点?若存在,求出点
坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现要完成下列三项抽样调查:①从
罐奶粉中抽取
罐进行食品安全卫生检查;②高二年级有
名学生,为调查学生的学习情况抽取一个容量为
的样本;③从某社区
户高收入家庭,
户中等收入家庭,
户低收入家庭中选出
户进行消费水平调查.以下各调查方法较为合理的是( )
A.①系统抽样,②简单随机抽样,③分层抽样
B.①简单随机抽样,②分层抽样,③系统抽样
C.①分层抽样,②系统抽样,③简单随机抽样
D.①简单随机抽样,②系统抽样,③分层抽样
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】进入
月份,香港大学自主招生开始报名,“五校联盟”统一对五校高三学生进行综合素质测试,在所有参加测试的学生中随机抽取了部分学生的成绩,得到如图所示的成绩频率分布直方图:
![]()
(1)估计五校学生综合素质成绩的平均值;
(2)某校决定从本校综合素质成绩排名前
名同学中,推荐
人参加自主招生考试,若已知
名同学中有
名理科生,2名文科生,试求这3人中含文科生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com