精英家教网 > 高中数学 > 题目详情
已知函数f(x)=a(2cos2
x
2
+sinx)+b

(Ⅰ)当a=1时,求函数f(x)的单调递增区间;.
(Ⅱ)当a<0时,若x∈[0,π],函数f(x)的值域是[3,4],求实数a,b的值.
(1)f(x)=a(cosx+1+sinx)+b=
2
asin(x+
π
4
)+a+b

当a=1时,f(x)=
2
sin(x+
π
4
)+1+b

∴当2kπ-
π
2
≤x+
π
4
≤2kπ+
π
2
   (k∈Z)
时,f(x)是增函数,
所以函数f(x)的单调递增区间为[2kπ-
4
,2kπ+
π
4
]   (k∈Z)

(Ⅱ)由x∈[0,π]得
π
4
≤x+
π
4
4
,∴-
2
2
≤sin(x+
π
4
)≤1

因为a<0,所以当sin(x+
π
4
)=1
时,f(x)取最小值3,即
2
a+a+b=3    (1)

sin(x+
π
4
)=-
2
2
时,f(x)取最大值4,即b=4
将b=4代入(1)式得a=1-
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案