精英家教网 > 高中数学 > 题目详情

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:吨)和年利润(单位:万元)的影响.对近六年的年宣传费和年销售量的数据作了初步统计,得到如下数据:

年份

2011

2012

2013

2014

2015

2016

年宣传费(万元)

38

48

58

68

78

88

年销售量(吨)

16.8

18.8

20.7

22.4

24.0

25.5

经电脑模拟,发现年宣传费(万元)与年销售量(吨)之间近似满足关系式,即.对上述数据作了初步处理,得到相关的值如下表:

75.3

24.6

18.3

101.4

(1)根据所给数据,求关于的回归方程;

(2)规定当产品的年销售量(吨)与年宣传费(万元)的比值在区间内时认为该年效益良好.该公司某年投入的宣传费用(单位:万元)分别为:,试根据回归方程估计年销售量,从这年中任选年,记其中选到效益良好年的数量为,试求随机变量的分布列和期望.(其中为自然对数的底数,

附:对于一组数据,…,,其回归直线中的斜率和截距的最小二乘估计分别为.

【答案】(1)(2)见解析

【解析】分析:(1)由题意,令,结合线性回归方程计算公式可得题中的线性回归方程为.

(2)由题意可得:年中有三年是效益良好年”,由超几何分布可得其分布列,计算数学期望为.

详解:(1)对两边取对数得,令

,由题给数据,得:

,于是

,得

故所求回归方程为.

(2)由,于是,即年中有三年是效益良好年”,

,由题得

所以的分布列如表所示,

0

1

2

3

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cosx(sinx+cosx)﹣
(1)若0<α< , 且sinα= , 求f(α)的值;
(2)求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax2+lnx.
(Ⅰ)当a=﹣1时,求函数y=f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)已知a<0,若函数y=f(x)的图象总在直线y=-的下方,求a的取值范围;
(Ⅲ)记f′(x)为函数f(x)的导函数.若a=1,试问:在区间[1,10]上是否存在k(k<100)个正数x1 , x2 , x3…xk , 使得f′(x1)+f′(x2)+f′(x3)+…+f′(xk)≥2012成立?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数,函数.

(1)讨论的单调性;

(2)当时,不等式恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C所对应的边分别为a,b,c.
(1)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);
(2)若a,b,c成等比数列,求cosB的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线C由上半椭圆C1 =1(a>b>0,y≥0)和部分抛物线C2:y=﹣x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为

(1)求a,b的值;
(2)过点B的直线l与C1 , C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,且f(x)=

(1)求函数f(x)的解析式;最小正周期及单调递增区间.

(2)当时,f(x)的最小值是-4,求此时函数f(x)的最大值,并求出相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有甲、乙两个项目,对甲项目每投资10万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为;已知乙项目的利润与产品价格的调整有关,在每次调整中,价格下降的概率都是p(0<p<1),设乙项目产品价格在一年内进行两次独立的调整.记乙项目产品价格在一年内的下降次数为X,对乙项目每投资10万元,X取0、1、2时,一年后相应利润是1.3万元、1.25万元、0.2万元.随机变量X1X2分别表示对甲、乙两项目各投资10万元一年后的利润.

(1)求X1X2的概率分布和均值E(X1),E(X2);

(2)当E(X1)<E(X2)时,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形是一个历史文物展览厅的俯视图,点上,在梯形区域内部展示文物,是玻璃幕墙,游客只能在区域内参观.在上点处安装一可旋转的监控摄像头.为监控角,其中在线段(含端点)上,且点在点的右下方.经测量得知:米,米,米,.记(弧度),监控摄像头的可视区域的面积为平方米.

(1)求关于的函数关系式,并写出的取值范围;(参考数据:

(2)求的最小值.

查看答案和解析>>

同步练习册答案