精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=ex-$\frac{3}{2}$x2-ax.
(1)若函数f(x)的图象在x=0处的切线方程为y=3x+b,求a,b的值;
(2)若函数f(x)在R上是增函数,实数a的最大值.

分析 (1)求出函数的导数,求出a的值,得到f(x)的解析式,求出b的值即可;
(2)问题转化为a≤ex-3x恒成立,设h(x)=ex-3x,根据函数的单调性求出h(x)的最小值,从而求出a的最大值即可.

解答 解:(1)∵f′(x)=ex-3x-a,∴f′(0)=1-a,
由题意得:1-a=3,解得:a=-2,
∴$f(x)={e^x}-\frac{3}{2}{x^2}+2x$,∴f(0)=1,
于是1=3×0+b,解得b=1;
(2)由题意f'(x)≥0即ex-3x-a≥0恒成立,
∴a≤ex-3x恒成立,设h(x)=ex-3x,
则h'(x)=ex-3,令h'(x)=ex-3=0,得x=ln3,
x,f′(x),f(x)的变化如下:

x(-∞,ln3)ln3(ln3,+∞)
h'(x)-0+
h(x)减函数极小值增函数
∴h(x)min=h(ln3)=3-3ln3,
∴a≤3-3ln3,∴a的最大值为3-3ln3.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知正项数列{an}满足a1=2且(n+1)an2+anan+1-nan+12=0(n∈N*
(Ⅰ)证明数列{an}为等差数列;
(Ⅱ)若记bn=$\frac{4}{{a}_{n}^{2}}$,Sn=b1+b2+…+bn.求证:Sn<$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设α为锐角,若cos(α+$\frac{π}{6}$)=$\frac{1}{2}$,则sin(2α+$\frac{π}{12}}$)的值为$\frac{{\sqrt{6}+\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项之和为Sn满足Sn=2an-2.
(Ⅰ)数列{an}的通项公式;
(Ⅱ)求数列{(2n-1)•an}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=2x+log3$\frac{x-1}{1-ax}$为奇函数,a为常数.
(Ⅰ)求实数a的值;
(Ⅱ)讨论函数f(x)的单调性,并写出单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某超市在开业一个月(30天)内日接待顾客人数(万人)与时间t (天)的函数关系近似满足f(t)=1+$\frac{4}{t}$,顾客人均消费额(元)与时间t(天)的函数关系近似满足g(t)=84-|t-20|.
(1)求该超市日销售额y (万元)与时间t (天)的函数关系式;
(2)求该超市日销售额的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=-2x2+6x(-2<x≤2)的最大值是$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某店销售进价为2元/件的产品A,假设该店产品A每日的销售量y(单位:千件)与销售价格x(单位:元/件)满足的关系式y=$\frac{10}{x-2}$+4(x-6)2,其中2<x<6.
(1)若产品A销售价格为4元/件,求该店每日销售产品A所获得的利润;
(2)试确定产品A销售价格x的值,使该店每日销售产品A所获得的利润最大.(保留1位小数点)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,则$\overrightarrow{b}$•(2$\overrightarrow{a}$+$\overrightarrow{b}$)的值为6.

查看答案和解析>>

同步练习册答案