精英家教网 > 高中数学 > 题目详情
10.设α为锐角,若cos(α+$\frac{π}{6}$)=$\frac{1}{2}$,则sin(2α+$\frac{π}{12}}$)的值为$\frac{{\sqrt{6}+\sqrt{2}}}{4}$.

分析 根据α为锐角,cos(α+$\frac{π}{6}$)为正数,可得α+$\frac{π}{6}$是锐角,利用平方关系可得sin(α+$\frac{π}{6}$).接下来配角,得到cosα,sinα,再用二倍角公式可得sin2α,cos2α,最后用两角和的正弦公式得到sin(2α+$\frac{π}{12}}$)的值即可.

解答 解::因为α为锐角,cos(α+$\frac{π}{6}$)=$\frac{1}{2}$为正数,可得α+$\frac{π}{6}$是锐角,
所以sin(α+$\frac{π}{6}$)=$\sqrt{1-(\frac{1}{2})^{2}}$=$\frac{\sqrt{3}}{2}$,
所以cosα=cos(α+$\frac{π}{6}$-$\frac{π}{6}$)=cos(α+$\frac{π}{6}$)cos $\frac{π}{6}$+sin(α+$\frac{π}{6}$)sin $\frac{π}{6}$=$\frac{1}{2}$×$\frac{\sqrt{3}}{2}$+$\frac{\sqrt{3}}{2}$×$\frac{1}{2}$=$\frac{\sqrt{3}}{2}$.
sinα=sin(α+$\frac{π}{6}$-$\frac{π}{6}$)=sin(α+$\frac{π}{6}$)cos $\frac{π}{6}$-cos(α+$\frac{π}{6}$)sin $\frac{π}{6}$=$\frac{\sqrt{3}}{2}$×$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$×$\frac{1}{2}$=$\frac{\sqrt{3}-1}{4}$.
由此可得sin2α=2sinαcosα=2×$\frac{\sqrt{3}-1}{4}$×$\frac{\sqrt{3}}{2}$=$\frac{3-\sqrt{3}}{4}$;cos2α=cos2α-sin2α=$\frac{4+\sqrt{3}}{8}$.
sin$\frac{π}{12}}$=$\frac{\sqrt{6}-\sqrt{2}}{4}$.cos$\frac{π}{12}}$=$\frac{\sqrt{6}+\sqrt{2}}{4}$.
所以sin(2α+$\frac{π}{12}}$)=sin2αcos $\frac{π}{12}}$+cos2αsin $\frac{π}{12}}$=$\frac{{\sqrt{6}+\sqrt{2}}}{4}$.
故答案是:$\frac{{\sqrt{6}+\sqrt{2}}}{4}$.

点评 本题着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式,考查了三角函数中的恒等变换应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.解关于x的不等式:
(1)$\frac{3x-2}{x-1}$>1;
(2)x2-ax-2a2<0 (a为常数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设全集U=R,A={x|x(x-2)<0},B={x|y=ln(1-x)<0},则A∩(∁UB)=(  )
A.{x|0<x≤1}B.{x|1≤x<2}C.{x|x≥1}D.{x|x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.算法如图,若输入m=210,n=117,则输出的n为(  )
A.2B.3C.7D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知直线y=kx+1是曲线y=$\frac{1}{x}$的切线,则k的值为-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,若a=2,b=2$\sqrt{3}$,A=30°,则B等于(  )
A.30°B.30°或150°C.60°D.60°或 120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列说法中正确的是(  )
A.已知f(x)是可导函数,则“f'(x0)=0”是“x0是f(x)的极值点”的充分不必要条件
B.“若α=$\frac{π}{6}$,则sinα=$\frac{1}{2}$”的否命题是“若α≠$\frac{π}{6}$,则sinα≠$\frac{1}{2}$”
C.若p:?x0∈R,x02-x0-1>0,则?p:?x∈R,x2-x-1<0
D.若p∧q为假命题,则p,q均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ex-$\frac{3}{2}$x2-ax.
(1)若函数f(x)的图象在x=0处的切线方程为y=3x+b,求a,b的值;
(2)若函数f(x)在R上是增函数,实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.关于x的一元二次方程x2+2(a+1)x-(a-1)=0的一个根大于1,一个根小于1,则实数a的取值范围是a<-4.

查看答案和解析>>

同步练习册答案