精英家教网 > 高中数学 > 题目详情
19.关于x的一元二次方程x2+2(a+1)x-(a-1)=0的一个根大于1,一个根小于1,则实数a的取值范围是a<-4.

分析 利用二次函数的性质列出不等式求解即可.

解答 解:一元二次方程x2+2(a+1)x-(a-1)=0的一个根大于1,一个根小于1,
可得12+2(a+1)-(a-1)<0,
解得:a<-4.
故答案为:a<-4.

点评 本题考查二次函数的性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设α为锐角,若cos(α+$\frac{π}{6}$)=$\frac{1}{2}$,则sin(2α+$\frac{π}{12}}$)的值为$\frac{{\sqrt{6}+\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=-2x2+6x(-2<x≤2)的最大值是$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某店销售进价为2元/件的产品A,假设该店产品A每日的销售量y(单位:千件)与销售价格x(单位:元/件)满足的关系式y=$\frac{10}{x-2}$+4(x-6)2,其中2<x<6.
(1)若产品A销售价格为4元/件,求该店每日销售产品A所获得的利润;
(2)试确定产品A销售价格x的值,使该店每日销售产品A所获得的利润最大.(保留1位小数点)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax2-(a+2)x+2(a为常数).
(Ⅰ)当a=1时,解关于x的不等式f(x)<0;
(Ⅱ)当a∈R时,解关于x的不等式f(x)<0.
(Ⅲ)若对于任意x∈[2,3],总有f(x)>0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.阿基米德在《论球与圆柱》一书中推导球的体积公式时,得到一个等价的三角恒等式sin$\frac{π}{2n}$+sin$\frac{2π}{2n}$+…+$\frac{(2n-1)π}{2n}$=$\frac{1}{{tan\frac{π}{4n}}}$,若在两边同乘以$\frac{π}{2n}$,并令n→+∞,则左边=$\lim_{x→∞}$$\sum_{i=1}^{2n}$$\frac{π}{2n}$sin$\frac{iπ}{2n}}$=$\int_0^π$sinxdx.因此阿基米德实际上获得定积分$\int_0^π$sinxdx的等价结果.则$\int_0^π$sinxdx=(  )
A.-2B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={1,2,3},集合B={x|a+1<x<6a-1},其中a∈R.
(1)写出集合A的所有真子集;
(2)若A∩B={3},求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,则$\overrightarrow{b}$•(2$\overrightarrow{a}$+$\overrightarrow{b}$)的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|x2-3x+2≥0},B={x|$\frac{x}{x-1}$≥0},则集合A∩B=(  )
A.{x|x≤1}B.{x|x≥2或x≤0}C.{x|1<x≤2}D.{x|1≤x≤2}

查看答案和解析>>

同步练习册答案