精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,
(1)分别求f($\frac{1}{2}$)+f(2),f($\frac{1}{3}$)+f(3),f($\frac{1}{4}$)+f(4)的值;
(2)归纳猜想一般性结论,并给出证明;
(3)求值:f($\frac{1}{2014}$)+f($\frac{1}{2013}$)+f($\frac{1}{2012}$)+…+f($\frac{1}{2}$)+f(1)+f(2)+…f(2013)+f(2014)

分析 (1)根据f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,直接代入计算可得f($\frac{1}{2}$)+f(2),f($\frac{1}{3}$)+f(3),f($\frac{1}{4}$)+f(4);
(2)由(1)可猜想f($\frac{1}{x}$)+f(x)=1,先计算出f($\frac{1}{x}$),再与f(x)相加后化简可得绪论;
(3)根据(2)中结论,可得答案.

解答 解:(1)∵f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,
∴f($\frac{1}{2}$)+f(2)=$\frac{1}{5}$+$\frac{4}{5}$=1,
f($\frac{1}{3}$)+f(3)=$\frac{1}{10}$+$\frac{9}{10}$=1,
f($\frac{1}{4}$)+f(4)=$\frac{1}{17}$+$\frac{16}{17}$=1,
(2)由(1)可猜想f($\frac{1}{x}$)+f(x)=1,证明如下:
∵f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,
∴f($\frac{1}{x}$)=$\frac{{(\frac{1}{x})}^{2}}{1+{(\frac{1}{x})}^{2}}$=$\frac{1}{1+{x}^{2}}$,
∴f($\frac{1}{x}$)+f(x)=$\frac{1}{1+{x}^{2}}$+$\frac{{x}^{2}}{1+{x}^{2}}$=1,
(3)由(2)得:
f($\frac{1}{2014}$)+f($\frac{1}{2013}$)+f($\frac{1}{2012}$)+…+f($\frac{1}{2}$)+f(1)+f(2)+…f(2013)+f(2014)=2013$\frac{1}{2}$

点评 本题考查的知识点是函数的值,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.下面给出了关于复数的四种类比推理:
①若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”;
②复数的加减法运算可以类比多项式的加减法运算法则
③由实数a绝对值的性质|a|2=a2类比得到复数z的性质|z|2=z2
④由向量加法的几何意义可以类比得到复数加法的几何意义.
其中类比得到的结论错误的是(  )
A.①③B.②④C.②③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若z∈C,a=$\frac{{z}^{2}-(\overline{z})^{2}}{2i}$,b=z•$\overline{z}$,则a-b的最大可能值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆E中心在原点,一个焦点为(-$\sqrt{6}$,0),离心率e=$\frac{\sqrt{3}}{2}$
(Ⅰ)求椭圆E的方程;
(Ⅱ)AB是长为$\frac{5}{2}$的椭圆E动弦,O为坐标原点,求△AOB面积的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设x,y满足约束条件$\left\{{\begin{array}{l}{x≥0}\\{y≥0}\\{2x+3y≤2}\end{array}}\right.$,则目标函数z=$\frac{y+1}{x+1}$的最小值为(  )
A.2B.1C.$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.教学大楼共有4层,每层都有东西两个楼梯,从一层到4层共有(  )种走法?
A.32B.23C.42D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知某次期中考试中,甲、乙两组学生的数学成绩如下:则下列结论正确的是(  )
甲:88 100 95 86 95 91 84 74 92 83
乙:93   89 81 77 96 78 77 85 89 86.
A.$\overline{x}$>$\overline{x}$,s>sB.$\overline{x}$甲>$\overline{x}$,s<sC.$\overline{x}$甲<$\overline{x}$,s>sD.$\overline{x}$甲<$\overline{x}$,s<s

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求函数f(x)=2x+$\sqrt{1-2x}$的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知c>0,设命题p:函数y=cx为减函数.命题q:当x∈[$\frac{1}{2}$,2]时,函数f(x)=x+$\frac{1}{x}$>$\frac{1}{c}$恒成立.
(1)如果“p或q”为真命题,求c的取值范围.
(2)如果“p且q”为真命题,求c的取值范围.

查看答案和解析>>

同步练习册答案