精英家教网 > 高中数学 > 题目详情
1.教学大楼共有4层,每层都有东西两个楼梯,从一层到4层共有(  )种走法?
A.32B.23C.42D.24

分析 根据题意,分析层与层之间的走法数目,利用分步计数原理计算可得答案.

解答 解:根据题意,教学大楼共有4层,每层都有东西两个楼梯,
则从一层到二层,有2种走法,同理从二层到三层、从三层到四层也有2种走法,
则从一层到4层共有2×2×2=23种走法;
故选:B.

点评 本题考查分步计数原理的应用,注意认真分析题意,注意4层的大楼有3层楼梯.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知二项式${(\sqrt{x}-\frac{1}{{\root{3}{x}}})^5}$的展开式中常数项为(  )
A.-10B.6C.10D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知圆x2+y2+2x-4y+1=0关于直线2ax-by+2=0(a,b∈R)对称,则ab的取值范围是(  )
A.(-∞,$\frac{1}{4}$]B.(0,$\frac{1}{4}$)C.(-$\frac{1}{4}$,0)D.[-$\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,将长$A{A^'}=3\sqrt{3}$,宽AA1=3的矩形沿长的三等分线处折叠成一个三棱柱,如图所示:
(1)求异面直线PQ与AC所成角的余弦值;
(2)求三棱锥A1-APQ的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,
(1)分别求f($\frac{1}{2}$)+f(2),f($\frac{1}{3}$)+f(3),f($\frac{1}{4}$)+f(4)的值;
(2)归纳猜想一般性结论,并给出证明;
(3)求值:f($\frac{1}{2014}$)+f($\frac{1}{2013}$)+f($\frac{1}{2012}$)+…+f($\frac{1}{2}$)+f(1)+f(2)+…f(2013)+f(2014)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知0<α<$\frac{π}{2}<β<π,sin\frac{α}{2}=\frac{{\sqrt{5}}}{5},cos(β-α)=\frac{{\sqrt{2}}}{10}$
(1)求sinα的值;
(2)求角β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.对某电子元件进行寿命追踪调查,所得情况如频率分布直方图.(1)图中纵坐标y0处刻度不清,根据图表所提供的数据还原y0
(2)根据图表的数据按分层抽样,抽取20个元件,寿命为100~300之间的应抽取几个;
(3)从(2)中抽出的寿命落在100~300之间的元件中任取2个元件,求事件“恰好有一个寿命为100~200,一个寿命为200~300”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求函数y=sin2(x+$\frac{π}{6}$)的最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.过直角坐标平面xOy中的抛物线y2=2px的焦点F作一条倾斜角为$\frac{π}{4}$的直线与抛物线相交于A,B两点.
(1)若p=2,求A,B两点间的距离;
(2)当p∈(0,+∞)时,判断∠AOB是否为定值.若是,求出其余弦值;若不是,说明理由.

查看答案和解析>>

同步练习册答案