精英家教网 > 高中数学 > 题目详情
15.(1)求直线l1:3x+ay+5=0,l2:ax-(2a-1)y-3=0,且两直线垂直,求a的值.
(2)求两直线l1:y=2,l2:$\sqrt{3}$x+y-5=0的夹角.

分析 (1)由垂直关系可得3a+a[-(2a-1)]=0,解方程可得;
(2)易得直线l1的倾斜角为90°直线l2倾斜角为120°,可得两直线的夹角为30°

解答 解:(1)∵直线l1:3x+ay+5=0,l2:ax-(2a-1)y-3=0,且两直线垂直,
∴3a+a[-(2a-1)]=0,解得a=0或a=2;
(2)∵直线l1:y=2的倾斜角为90°
直线l2:$\sqrt{3}$x+y-5=0的斜率为-$\sqrt{3}$,倾斜角为120°,
∴两直线的夹角为30°

点评 本题考查两直线的垂直关系和两直线的夹角,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在四棱锥V-ABCD中,B1,D1分别为侧棱VB、VD的中点,则四面体AB1CD1的体积与四棱锥V-ABCD的体积之比为(  )
A.1:6B.1:5C.1:4D.1:3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2+$\frac{a}{x}$(x≠0,a∈R).
(1)判断函数f(x)的奇偶性;
(2)当a=1时,若存在x1∈[1,+∞)和任意的x2∈[1,+∞)使得f(x1)<log2(x2+m)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知a>0,b>0,方程为x2+y2-4x+2y=0的曲线关于直线ax-by-1=0对称,则$\frac{a+2b}{ab}$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.我们把焦距和短轴相等的椭圆称为“等轴椭圆”.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,一“等轴椭圆”与该双曲线有相同的焦点,且双曲线的渐近线与椭圆相交于第一象限内的一点M,若直线F1M的斜率为$\frac{\sqrt{2}}{4}$,则该双曲线的离心率为(  )
A.$\frac{3\sqrt{22}}{14}$B.$\frac{\sqrt{6}}{2}$C.$\frac{3}{2}$D.$\frac{3\sqrt{22}}{14}$或$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)角α的终边上一点P的坐标为(4t,-3t)(t不为0)求2sinα+cosα.
(2)设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是两个不共线的向量,若$\overrightarrow{AB}$=2$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$,$\overrightarrow{CB}$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,若三点A,B,C共线,求k的值.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高二上文周末检测三数学试卷(解析版) 题型:解答题

已知等差数列中,,求此数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.
(1)证明:2${\;}^{{a}_{1}}$,2${\;}^{{a}_{2}}$,2${\;}^{{a}_{3}}$,2${\;}^{{a}_{4}}$依次构成等比数列;
(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;
(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.

查看答案和解析>>

科目:高中数学 来源:2017届辽宁庄河市高三9月月考数学(文)试卷(解析版) 题型:填空题

已知偶函数上是增函数,则满足的实数的取值范围是______________.

查看答案和解析>>

同步练习册答案