【题目】已知函数
有两个零点
,
,且
.
(1)求
的取值范围;
(2)证明:
.
科目:高中数学 来源: 题型:
【题目】设椭圆
的左焦点为
,右顶点为
,离心率为
.已知
是抛物线
的焦点,
到抛物线的准线
的距离为
.
(I)求椭圆的方程和抛物线的方程;
(II)设
上两点
,
关于
轴对称,直线
与椭圆相交于点
(
异于点
),直线
与
轴相交于点
.若
的面积为
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知矩形
中,
,E,F分别为
,
的中点.沿
将矩形
折起,使
,如图所示.设P、Q分别为线段
,
的中点,连接
.
![]()
(1)求证:
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为
米,高为
米,体积为
立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为
元(
为圆周率).该蓄水池的体积最大时
______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在直角梯形
中,E,F分别为
的三等分点,
,
,
,
,若沿着
,
折叠使得点A和点B重合,如图2所示,连结
,
.
![]()
(1)求证:平面
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,湖中有一个半径为
千米的圆形小岛,岸边点
与小岛圆心
相距
千米,为方便游人到小岛观光,从点
向小岛建三段栈道
,
,
,湖面上的点
在线段
上,且
,
均与圆
相切,切点分别为
,
,其中栈道
,
,
和小岛在同一个平面上.沿圆
的优弧(圆
上实线部分)上再修建栈道
.记
为
.
![]()
用
表示栈道的总长度
,并确定
的取值范围;
求当
为何值时,栈道总长度最短.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形
中,E,F分别为AB的三等分点,
,
,
,
若沿着FG,ED折叠使得点A,B重合,如图2所示,连结GC,BD
![]()
(1)求证:平面
平面BCDE;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省从2021年开始将全面推行新高考制度,新高考“
”中的“2”要求考生从政治、化学、生物、地理四门中选两科,按照等级赋分计入高考成绩,等级赋分规则如下:从2021年夏季高考开始,高考政治、化学、生物、地理四门等级考试科目的考生原始成绩从高到低划分为
五个等级,确定各等级人数所占比例分别为
,
,
,
,
,等级考试科目成绩计入考生总成绩时,将
至
等级内的考生原始成绩,依照等比例转换法分别转换到
、
、
、
、
五个分数区间,得到考生的等级分,等级转换分满分为100分.具体转换分数区间如下表:
等级 |
|
|
|
|
|
比例 |
|
|
|
|
|
赋分区间 |
|
|
|
|
|
而等比例转换法是通过公式计算:![]()
其中
,
分别表示原始分区间的最低分和最高分,
、
分别表示等级分区间的最低分和最高分,
表示原始分,
表示转换分,当原始分为
,
时,等级分分别为
、![]()
假设小南的化学考试成绩信息如下表:
考生科目 | 考试成绩 | 成绩等级 | 原始分区间 | 等级分区间 |
化学 | 75分 |
|
|
|
设小南转换后的等级成绩为
,根据公式得:
,
所以
(四舍五入取整),小南最终化学成绩为77分.
已知某年级学生有100人选了化学,以半期考试成绩为原始成绩转换本年级的化学等级成绩,其中化学成绩获得
等级的学生原始成绩统计如下表:
成绩 | 95 | 93 | 91 | 90 | 88 | 87 | 85 |
人数 | 1 | 2 | 3 | 2 | 3 | 2 | 2 |
(1)从化学成绩获得
等级的学生中任取2名,求恰好有1名同学的等级成绩不小于96分的概率;
(2)从化学成绩获得
等级的学生中任取5名,设5名学生中等级成绩不小于96分人数为
,求
的分布列和期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com