【题目】已知函数![]()
(1)讨论
的单调性;
(2)当
时,
,求
的取值范围.
【答案】(1)见解析;(2)![]()
【解析】
(1)f′(x)=(x+1)ex-ax-a=(x+1)(ex-a).对a分类讨论,即可得出单调性.
(2)由xex-ax-a+1≥0,可得a(x+1)≤xex+1,当x=-1时,0≤-
+1恒成立.当x>-1时,a
令g(x)=
,利用导数研究函数的单调性极值与最值即可得出.
解法一:(1)![]()
①当
时,
|
| -1 |
|
| - | 0 | + |
| ↘ | 极小值 | ↗ |
所以
在
上单调递减,在
单调递增.
②当
时,
的根为
或
.
若
,即
,
|
| -1 |
|
|
|
| + | 0 | - | 0 | + |
| ↗ | 极大值 | ↘ | 极小值 | ↗ |
所以
在
,
上单调递增,在
上单调递减.
若
,即
,
在
上恒成立,所以
在
上单调递增,无减区间.
若
,即
,
|
|
|
| -1 |
|
| + | 0 | - | 0 | + |
| ↗ | 极大值 | ↘ | 极小值 | ↗ |
所以
在
,
上单调递增,在
上单调递减.
综上:
当
时,
在
上单调递减,在
上单调递增;
当
时,
在
,
上单调递增,在
上单调递减;
自
时,
在
上单调递增,无减区间;
当
时,
在
,
上单调递增,在
上单调递减.
(2)因为
,所以
.
当
时,
恒成立.
当
时,
.
令
,
,
设
,
因为
在
上恒成立,
即
在
上单调递增.
又因为
,所以
在
上单调递减,在
上单调递增,
则
,所以
.
综上,
的取值范围为
.
解法二:(1)同解法一;
(2)令
,
所以
,
当
时,
,则
在
上单调递增,
所以
,满足题意.
当
时,
令
,
因为
,即
在
上单调递增.
又因为
,
,
所以
在
上有唯一的解,记为
,
|
|
|
|
| - | 0 | + |
| ↘ | 极小值 | ↗ |
![]()
![]()
,满足题意.
当
时,
,不满足题意.
综上,
的取值范围为
.
科目:高中数学 来源: 题型:
【题目】甲、乙两名同学参加一项射击游戏,两人约定,其中任何一人每射击一次,击中目标得2分,未击中目标得0分.若甲、乙两名同学射击的命中率分别为
和p,且甲、乙两人各射击一次所得分数之和为2的概率为
,假设甲、乙两人射击互不影响.
(1)求p的值;
(2)记甲、乙两人各射击一次所得分数之和为X,求X的分布列和均值
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列{an}中,a2=-8,a6=0.
(1)求数列{an}的通项公式;
(2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求数列{bn}的前n项和Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现代城市大多是棋盘式布局(如北京道路几乎都是东西和南北走向).在这样的城市中,我们说的两点间的距离往往不是指两点间的直线距离(位移),而是实际路程(如图).在直角坐标平面内,我们定义
,
两点间的“直角距离”为:
.
![]()
(1)在平面直角坐标系中,写出所有满足到原点的“直角距离”为2的“格点”的坐标.(格点指横、纵坐标均为整数的点)
(2)求到两定点
、
的“直角距离”和为定值
的动点轨迹方程,并在直角坐标系内作出该动点的轨迹.(在以下三个条件中任选一个做答)
①
,
,
;
②
,
,
;
③
,
,
.
(3)写出同时满足以下两个条件的“格点”的坐标,并说明理由(格点指横、纵坐标均为整数的点).
①到
,
两点“直角距离”相等;
②到
,
两点“直角距离”和最小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,从参加环保知识竞赛的1200名学生中抽出
名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:
![]()
(1)
这一组的频数、频率分别是多少?
(2)估计这次环保知识竞赛的及格率。(
分及以上为及格)
(3)若准备取成绩最好的300名发奖,则获奖的最低分数约为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD﹣A1B1C1D1中,棱长为2,M,N分别为A1B,AC的中点.
![]()
(1)证明:MN//B1C;
(2)求A1B与平面A1B1CD所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.
![]()
图1 图2
(1)记“在
年成交的二手车中随机选取一辆,该车的使用年限在
”为事件
,试估计
的概率;
(2)根据该汽车交易市场的历史资料,得到散点图如图2,其中
(单位:年)表示二手车的使用时间,
(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用
作为二手车平均交易价格
关于其使用年限
的回归方程,相关数据如下表(表中
,
):
|
|
|
|
|
|
5.5 | 8.7 | 1.9 | 301.4 | 79.75 | 385 |
①根据回归方程类型及表中数据,建立
关于
的回归方程;
②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格
的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格
的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.
附注:①对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
;
②参考数据:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某水果种植基地引进一种新水果品种,经研究发现该水果每株的产量
(单位:
)和与它“相近”的株数
具有线性相关关系(两株作物“相近”是指它们的直线距离不超过
),并分别记录了相近株数为0,1,2,3,4时每株产量的相关数据如下:
| 0 | 1 | 2 | 3 | 4 |
| 15 | 12 | 11 | 9 | 8 |
(1)求出该种水果每株的产量
关于它“相近”株数
的回归方程;
(2)有一种植户准备种植该种水果500株,且每株与它“相近”的株数都为
,计划收获后能全部售出,价格为10元
,如果收入(收入=产量×价格)不低于25000元,则
的最大值是多少?
(3)该种植基地在如图所示的直角梯形地块的每个交叉点(直线的交点)处都种了一株该种水果,其中每个小正方形的边长和直角三角形的直角边长都为
,已知该梯形地块周边无其他树木影响,若从所种的该水果中随机选取一株,试根据(1)中的回归方程,预测它的产量的分布列与数学期望.
附:回归方程
中斜率和截距的最小二乘法估计公式分别为:
,
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】市面上有某品牌
型和
型两种节能灯,假定
型节能灯使用寿命都超过5000小时,经销商对
型节能灯使用寿命进行了调查统计,得到如下频率分布直方图:
![]()
某商家因原店面需要重新装修,需租赁一家新店面进行周转,合约期一年.新店面需安装该品牌节能灯5支(同种型号)即可正常营业.经了解,
型20瓦和
型55瓦的两种节能灯照明效果相当,都适合安装.已知
型和
型节能灯每支的价格分别为120元、25元,当地商业电价为0.75元/千瓦时.假定该店面一年周转期的照明时间为3600小时,若正常营业期间灯坏了立即购买同型灯管更换.(用频率估计概率)
(Ⅰ)根据频率直方图估算
型节能灯的平均使用寿命;
(Ⅱ)根据统计知识知,若一支灯管一年内需要更换的概率为
,那么
支灯管估计需要更换
支.若该商家新店面全部安装了
型节能灯,试估计一年内需更换的支数;
(Ⅲ)若只考虑灯的成本和消耗电费,你认为该商家应选择哪种型号的节能灯,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com