精英家教网 > 高中数学 > 题目详情
已知点Q是圆x2+y2=4上的动点,定点P(4,0),若点MPQ所成的比为1∶2,求点M的轨迹.

解析:本题是比较典型的求轨迹问题,一个点的位置随另一点的位置的变化而变化,要求的是动点的轨迹,可以先求出其轨迹方程,然后根据方程得知其轨迹.

解:设点Q(2cosθ,2sinθ),M(x,y),则由题意得两式平方相加,得点M的轨迹方程为(-2)2+(2)2=4,即(x-)2+y2=,故其轨迹为以点(,0)为圆心、为半径的圆.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P是圆x2+y2=1上一动点,点P在y轴上的射影为Q,设满足条件
QM
QP
(λ为非零常数)的点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)若存在过点N(
1
2
,0)
的直线l与曲线C相交于A、B两点,且
OA
OB
=0(O为坐标原点),求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是圆x2+y2=1上的动点,点P在y轴上的射影为Q,设满足条件
QM
=2
QP
的点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)设过点N(1,0)且斜率为k1(k1≠0)的直线l被曲线C所截得的弦的中点为A,O为坐标原点,直线OA的斜率为k2,求k12+k22的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是圆x2+y2=1上任意一点,过点P作y轴的垂线,垂足为Q,点R满足
RQ
=
3
PQ
,记点R的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设A(0,1),点M、N在曲线C上,且直线AM与直线AN的斜率之积为
2
3
,求△AMN的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2012年浙江省嘉兴市高三数学教学测试卷2(理科)(解析版) 题型:解答题

已知点P是圆x2+y2=1上任意一点,过点P作y轴的垂线,垂足为Q,点R满足,记点R的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设A(0,1),点M、N在曲线C上,且直线AM与直线AN的斜率之积为,求△AMN的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省连云港市东海高级中学高考数学三模试卷(解析版) 题型:解答题

已知点P是圆x2+y2=1上一动点,点P在y轴上的射影为Q,设满足条件(λ为非零常数)的点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)若存在过点的直线l与曲线C相交于A、B两点,且=0(O为坐标原点),求λ的取值范围.

查看答案和解析>>

同步练习册答案