精英家教网 > 高中数学 > 题目详情
15.如图所示,△ABD和△CBD是全等的等边三角形,且边长为2,AC=$\sqrt{6}$,F、G分别为AD、BC的中点.
(1)求证:平面ABD⊥平面CBD;
(2)求直线FG与平面ADC所成角的正弦值.

分析 (1)由已知条件推导出AE⊥平面CBD,由此能证明平面ABD⊥平面CBD.    
(2)分别以E为原点,EB,EC,EA所在直线为x,y,z轴,建立坐标系,利用向量法能求出求直线FG与平面ADC所成角的正弦值.

解答 (1)证明:取BD的中点E,连接AE,CE,
∵△ABD和△CBD是全等的等边三角形,且边长为2,
∴AE=CE=$\sqrt{3}$,
∵AC=$\sqrt{6}$,∴AE⊥CE,
∵AE⊥BD,CE∩BD=E,
∴AE⊥平面CBD,
∵AE?平面ABD,
∴平面ABD⊥平面CBD;
(2)解:以E为原点,EB,EC,EA所在直线为x,y,z轴,建立坐标系,
则A(0,0,$\sqrt{3}$),D(-1,0,0),F(-$\frac{1}{2}$,0,$\frac{\sqrt{3}}{2}$),B(1,0,0),C(0,$\sqrt{3}$$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$,0),
∴$\overrightarrow{FG}$=(1,$\frac{\sqrt{3}}{2}$,-$\frac{\sqrt{3}}{2}$).
设平面ADC的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{x+\sqrt{3}z=0}\\{x+\sqrt{3}y=0}\end{array}\right.$,取$\overrightarrow{n}$=(-$\sqrt{3}$,1,1),
∴cos<$\overrightarrow{n}$,$\overrightarrow{FG}$>=$\frac{-\sqrt{3}}{\sqrt{3+1+1}•\sqrt{1+\frac{3}{4}+\frac{3}{4}}}$=-$\frac{\sqrt{6}}{5}$,
∴直线FG与平面ADC所成角的正弦值为$\frac{\sqrt{6}}{5}$.

点评 本题考查平面与平面垂直的证明,考查直线FG与平面ADC所成角的正弦值,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=x3-ax2-bx+c有两个极值点x1,x2,若x1<x2,则f(x)=x1-x2的解的个数为(  )
A.1B.2C.3D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在曲线y=x2上的点_______处的倾斜角为$\frac{π}{4}$(  )
A.(0,0)B.($\frac{1}{2}$,$\frac{1}{4}$)C.($\frac{1}{4}$,$\frac{1}{16}$)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设抛物线y2=8x的焦点为F,准线为l,P是抛物线上一点,PA⊥l,A为垂足,若直线PF的倾斜角为120°,则|PF|等于(  )
A.2B.$\frac{8}{3}$C.3D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知圆A的方程为x2+y2-2x-2y-7=0,圆B的方程为x2+y2+2x+2y-2=0,
(Ⅰ)判断圆A与圆B是否相交,若相交,求过两交点的直线方程及两交点间的距离;若不相交,请说明理由.
(Ⅱ)求两圆的公切线长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题:
分组频数频率
50.5~60.540.08
60.5~70.5a0.16
70.5~80.510b
80.5~90.5160.32
90.5~100.5cd
合计501
(1)求实数a,b,c,d的值;
(2)补全频数条形图;
(3)若成绩在85.5~100.5分的学生为一等奖,问获得一等奖的学生约为多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在直三棱柱ABC-A1B1C1中,AC=BC,AA1=3,AB=$\sqrt{3}$,D是AB的中点,点E在BB1上,B1E=$\frac{1}{6}$BB1,求证.
(Ⅰ)AC1∥平面B1CD;
(Ⅱ)平面A1C1E⊥平面B1CD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.下列命题中所有正确的序号是④⑤.
①存在$x∈(0,\frac{π}{2})$,使$sinx+cosx=\frac{1}{3}$;
②存在区间(a,b),使y=cosx为减函数而sinx<0;
③y=tanx在定义域内为增函数;
④y=cos2x+sin($\frac{π}{2}$-x)有最大值2,且是偶函数;
⑤若函数f(x)=asin2x+btanx+1,且f(-3)=5,则f(π+3)=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将函数y=sin(4x-$\frac{π}{3}$)的图象上各点的横坐标伸长为原来的2倍,再向左平移$\frac{π}{6}$个单位,得到的函数的图象的一个对称中心为(  )
A.($\frac{π}{2}$,0)B.($\frac{π}{4}$,0)C.($\frac{π}{9}$,0)D.($\frac{π}{16}$,0)

查看答案和解析>>

同步练习册答案