精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=x3-ax2-bx+c有两个极值点x1,x2,若x1<x2,则f(x)=x1-x2的解的个数为(  )
A.1B.2C.3D.不能确定

分析 由函数f(x)=x3-ax2-bx+c有两个极值点x1,x2,通过函数的极值以及函数的单调性判断方程解的个数.

解答 解:∵函数f(x)=x3-ax2-bx+c有两个极值点x1,x2
∴f′(x)=3x2-2ax-b=(x-x1)(x-x2),
即为3x2-2ax-b=0有两个不相等的正根x1,x2
∵x1<x2,∴此方程有两解且f(x)=x1或x2
即有x<x1,f′(x)>0,函数f(x)是增函数,
x1<x<x2,f′(x)<0,函数f(x)是减函数;
x2<x,f′(x)>0,函数f(x)是增函数,x=x2,函数取得极小值,
∵x1<x2,∴f(x)=x1-x2的解的个数不能确定.
故选D.

点评 本题综合考查了利用导数研究函数得单调性、极值及方程解得个数,考查了函数与方程的思想方法、推理能力、计算能力、分析问题和解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知sin(α+$\frac{π}{6}}$)+cosα=-$\frac{{\sqrt{3}}}{3}$,则cos($\frac{π}{6}$-α)=(  )
A.$-\frac{{2\sqrt{2}}}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知全集U=R,集合A={x|y=log2(11-x2)>1},B={x|x2-x-6>0},M={x|x2+bx+c≥0}.
(1)求A∩B; 
(2)若∁UM=A∩B,求b、c的值.
(3)若x2+bx+c=0一个根在区间(0,1)内,另一根在区间(1,2)内,求z=-2b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l:y=kx+2与椭圆E:x2+$\frac{{y}^{2}}{5}$=1交于A,B两点,若三角形AOB的面积$\frac{\sqrt{5}}{2}$,求直线的斜率k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=aln(x+1)+$\frac{1}{2}$x2-x,其中a为非零实数.
(1)讨论函数f(x)的单调性;
(2)若y=f(x)有两个极值点x1,x2,且x1<x2,求证:$\frac{f({x}_{2})}{{x}_{1}}$<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合M={y|y≥-1),N={x|-1≤x≤1),则M∩N=(  )
A.[-1,1]B.[-1,+∞)C.[1,+∞)D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等差数列{an},a7=2.则前13项的和S13=(  )
A.13B.25C.26D.39

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知全集U=R,集合A={x|x<-1或x≥3},B={x|2x-1≤3}.求:
(1)A∪B;(2)A∩(CUB);(3)(CUA)∪(CUB).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,△ABD和△CBD是全等的等边三角形,且边长为2,AC=$\sqrt{6}$,F、G分别为AD、BC的中点.
(1)求证:平面ABD⊥平面CBD;
(2)求直线FG与平面ADC所成角的正弦值.

查看答案和解析>>

同步练习册答案