| A. | 2 | B. | $\frac{8}{3}$ | C. | 3 | D. | $\frac{10}{3}$ |
分析 设P(x,y),取l与x轴的交点B,在Rt△ABF中,∠AFB=30°,|BF|=4,则|AB|=|y|=$\frac{4}{\sqrt{3}}$,利用抛物线的方程求出P的横坐标,利用抛物线的定义,求出|PF|.
解答 解:设P(x,y),取l与x轴的交点B,
在Rt△ABF中,∠AFB=30°,|BF|=4,则|AB|=|y|=$\frac{4}{\sqrt{3}}$,
∴8x=$\frac{16}{3}$,
∴x=$\frac{2}{3}$,
∴|PF|=2+$\frac{2}{3}$=$\frac{8}{3}$.
故选B.
点评 本题考查抛物线的方程与性质,考查抛物线的定义,确定P的坐标是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 是偶函数,而非奇函数 | B. | 既是奇函数又是偶函数 | ||
| C. | 是奇函数,而非偶函数 | D. | 是非奇非偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{1}{2}$] | B. | [0,1) | C. | [0,$\frac{1}{2}$) | D. | ∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{{\root{8}{x}}}$(x>0) | B. | $\frac{7}{{8\root{8}{x}}}$(x>0) | C. | $\frac{1}{{8\root{8}{x^7}}}$(x>0) | D. | $\frac{-1}{{8\root{8}{x}}}$(x>0) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com