精英家教网 > 高中数学 > 题目详情
3.设抛物线y2=8x的焦点为F,准线为l,P是抛物线上一点,PA⊥l,A为垂足,若直线PF的倾斜角为120°,则|PF|等于(  )
A.2B.$\frac{8}{3}$C.3D.$\frac{10}{3}$

分析 设P(x,y),取l与x轴的交点B,在Rt△ABF中,∠AFB=30°,|BF|=4,则|AB|=|y|=$\frac{4}{\sqrt{3}}$,利用抛物线的方程求出P的横坐标,利用抛物线的定义,求出|PF|.

解答 解:设P(x,y),取l与x轴的交点B,
在Rt△ABF中,∠AFB=30°,|BF|=4,则|AB|=|y|=$\frac{4}{\sqrt{3}}$,
∴8x=$\frac{16}{3}$,
∴x=$\frac{2}{3}$,
∴|PF|=2+$\frac{2}{3}$=$\frac{8}{3}$.
故选B.

点评 本题考查抛物线的方程与性质,考查抛物线的定义,确定P的坐标是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知直线l:y=kx+2与椭圆E:x2+$\frac{{y}^{2}}{5}$=1交于A,B两点,若三角形AOB的面积$\frac{\sqrt{5}}{2}$,求直线的斜率k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知全集U=R,集合A={x|x<-1或x≥3},B={x|2x-1≤3}.求:
(1)A∪B;(2)A∩(CUB);(3)(CUA)∪(CUB).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.把颜色分别为红、黑、白的3个球随机地分给甲、乙、丙3人,每人分得1个球.则事件“甲分得白球或乙分得白球”发生的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{6}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆C的参数方程为$\left\{\begin{array}{l}x=cosθ+1\\ y=sinθ\end{array}\right.$,(θ为参数),直线l的参数方程为$\left\{\begin{array}{l}x=t\\ y=-2\sqrt{3}+\sqrt{3}t\end{array}\right.$,(t为参数).
(1)求圆C的极坐标方程;
(2)直线l与圆C交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$f(x)=\frac{{\sqrt{1-{x^2}}}}{|x+3|-3}$,则f (x)(  )
A.是偶函数,而非奇函数B.既是奇函数又是偶函数
C.是奇函数,而非偶函数D.是非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,△ABD和△CBD是全等的等边三角形,且边长为2,AC=$\sqrt{6}$,F、G分别为AD、BC的中点.
(1)求证:平面ABD⊥平面CBD;
(2)求直线FG与平面ADC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|y=lg(1-2x)},B=[0,1),则A∩B=(  )
A.(-∞,$\frac{1}{2}$]B.[0,1)C.[0,$\frac{1}{2}$)D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=$\sqrt{x\sqrt{x\sqrt{x}}}$的导数是(  )
A.$\frac{1}{{\root{8}{x}}}$(x>0)B.$\frac{7}{{8\root{8}{x}}}$(x>0)C.$\frac{1}{{8\root{8}{x^7}}}$(x>0)D.$\frac{-1}{{8\root{8}{x}}}$(x>0)

查看答案和解析>>

同步练习册答案