精英家教网 > 高中数学 > 题目详情
11.把颜色分别为红、黑、白的3个球随机地分给甲、乙、丙3人,每人分得1个球.则事件“甲分得白球或乙分得白球”发生的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{6}$C.$\frac{1}{3}$D.$\frac{1}{2}$

分析 事件“甲分得白球或乙分得白球”的对立事件是丙分到白球,由此利用对立事件概率计算公式能求出事件“甲分得白球或乙分得白球”发生的概率.

解答 解:∵把颜色分别为红、黑、白的3个球随机地分给甲、乙、丙3人,每人分得1个球,
∴基本事件总数n=${A}_{3}^{3}$=6,
事件“甲分得白球或乙分得白球”的对立事件是丙分到白球,
∴事件“甲分得白球或乙分得白球”发生的概率为:
p=1-$\frac{{A}_{2}^{2}}{{A}_{3}^{3}}$=$\frac{2}{3}$.
故选:A.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知函数y=f(n)满足f(1)=8,且f(n+1)=f(n)+7,n∈N+.则f(2)=15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱柱ABCD-A1B1C1D1中,底面ABCD是平行四边形,AD=2,${B_1}A={B_1}D=\sqrt{5}$,$BA=BD=\sqrt{2}$,E,F分别是AD,B1C的中点.
(Ⅰ)求证:EF∥面ABB1A1
(Ⅱ)设二面角B1-AD-B的大小为60°,求证:直线BB1⊥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若实数x,y满足不等式组$\left\{\begin{array}{l}{x+y≥0}\\{x+2y-4≤0}\\{x-y-1≤0}\end{array}\right.$,则x+y的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在曲线y=x2上的点_______处的倾斜角为$\frac{π}{4}$(  )
A.(0,0)B.($\frac{1}{2}$,$\frac{1}{4}$)C.($\frac{1}{4}$,$\frac{1}{16}$)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.2015年8月某日某省x个监测点数据统计如下:
空气污染指数
(单位:μg/m3
(0,50](50,100](100,150](150,200]
监测点个数1540y10
(Ⅰ)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;
(Ⅱ)在空气污染指数分别为50~100和150~200的监测点中,用分层抽样的方法抽取5个监测点,从中任意选取2个监测点,事件A“两个都为良”发生的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设抛物线y2=8x的焦点为F,准线为l,P是抛物线上一点,PA⊥l,A为垂足,若直线PF的倾斜角为120°,则|PF|等于(  )
A.2B.$\frac{8}{3}$C.3D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题:
分组频数频率
50.5~60.540.08
60.5~70.5a0.16
70.5~80.510b
80.5~90.5160.32
90.5~100.5cd
合计501
(1)求实数a,b,c,d的值;
(2)补全频数条形图;
(3)若成绩在85.5~100.5分的学生为一等奖,问获得一等奖的学生约为多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知角α的顶点与原点重合,始边与x轴非负半轴重合,而终边经过点P(1,2).
(1)求tanα的值;
(2)求$\frac{\sqrt{2}sinα-2cosα}{5cosα+3sinα}$的值.

查看答案和解析>>

同步练习册答案