精英家教网 > 高中数学 > 题目详情
4.已知$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(2,3),则(2$\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$)=-9.

分析 根据平面向量的数量积的坐标公式进行运算即可.

解答 解:∵$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(2,3),
∴2$\overrightarrow{a}$-$\overrightarrow{b}$=(0,-3),
$\overrightarrow{a}$+$\overrightarrow{b}$=(3,3),
则 (2$\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$)=-3×3=-9,
故答案为:-9

点评 本题主要考查平面向量数量积的坐标运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,在直三棱柱ABC-A1B1C1中,AB=BC=2BB1,∠ABC=90°,D为BC的中点.
(Ⅰ)求证:A1B∥平面ADC1
(Ⅱ)求二面角C-AD-C1的余弦值;
(Ⅲ)若E为A1B1的中点,求AE与DC1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是$\frac{π}{3}$,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,如果$\overrightarrow{AB}$=$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{AC}$=$\overrightarrow{a}$-3$\overrightarrow{b}$,D 是BC的中点,那么|$\overrightarrow{AD}$|=(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列,An:a1,a2,…,an(n≥2,n∈N*)是正整数1,2,3,…,n的一个全排列.若对每个k∈{2,3,…,n}都有|ak-ak-1|=2或3,则称An为H数列.
(Ⅰ)写出满足a5=5的所有H数列A5
(Ⅱ)写出一个满足a5k(k=1,2,…,403)的H数列A2015的通项公式;
(Ⅲ)在H数列A2015中,记bk=a5k(k=1,2,…,403).若数列{bk}是公差为d的等差数列,求证:d=5或-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.为丰富市民的文化生活,市政府计划在一块半径为200m,圆心角为120°的扇形地上建造市民广场.规划设计如图:内接梯形ABCD区域为运动休闲区,其中A,B分别在半径OP,OQ上,C,D在圆弧$\widehat{PQ}$上,CD∥AB;△OAB区域为文化展示区,AB长为$50\sqrt{3}$m;其余空地为绿化区域,且CD长不得超过200m.
(1)试确定A,B的位置,使△OAB的周长最大?
(2)当△OAB的周长最大时,设∠DOC=2θ,试将运动休闲
区ABCD的面积S表示为θ的函数,并求出S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)左右顶点为A1,A2,左右焦点为F1,F2,P为双曲线C上异于顶点的一动点,直线PA1斜率为k1,直线PA2斜率为k2,且k1k2=1,又△PF1F2内切圆与x轴切于点(1,0),则双曲线方程为x2-y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°,点N在线段PB上,且PN=$\sqrt{2}$.
(Ⅰ)求证:BD⊥PC;
(Ⅱ)求证:MN∥平面PDC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设l,m是两条异面直线,P是空间任意一点,则下列命题正确的是(  )
A.过P点必存在平面与两异面直线l,m都垂直
B.过P点必存在平面与两异面直线l,m都平行
C.过P点必存在直线与两异面直线l,m都垂直
D.过P点必存在直线与两异面直线l,m都平行

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,三棱柱ABC-DEF的侧面BEFC是边长为1的正方形,侧面BEFC⊥侧面ADEB,AB=4,∠DEB=60°,G是DE的中点.
(Ⅰ)求证:CE∥平面AGF;
(Ⅱ)求证:GB⊥平面BEFC;
(Ⅲ)在线段BC上是否存在一点P,使二面角P-GE-B为45°,若存在,求BP的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案