精英家教网 > 高中数学 > 题目详情
16.在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°,点N在线段PB上,且PN=$\sqrt{2}$.
(Ⅰ)求证:BD⊥PC;
(Ⅱ)求证:MN∥平面PDC.

分析 (Ⅰ)由正三角形的性质可得BD⊥AC,利用线面垂直的性质可知PA⊥BD,再利用线面垂直的判定定理即可证明BD⊥PC;
(Ⅱ)利用已知条件分别求出BM、MD、PB,得到$\frac{BM}{MD}=\frac{BN}{NP}$,即可得到MN∥PD,再利用线面平行的判定定理即可证明

解答 证明:(I)∵△ABC是正三角形,M是AC中点,
∴BM⊥AC,即BD⊥AC.
又∵PA⊥平面ABCD,∴PA⊥BD.
又PA∩AC=A,∴BD⊥平面PAC.
∴BD⊥PC.
(Ⅱ)在正△ABC中,BM=2$\sqrt{3}$.
在△ACD中,
∵M为AC中点,DM⊥AC,∴AD=CD.
∠ADC=120°,
∴DM=$\frac{2\sqrt{3}}{3}$,
∴$\frac{NM}{MD}$=$\frac{3}{1}$.
在等腰直角△PAB中,PA=AB=4,PB=4$\sqrt{2}$,
∴$\frac{BN}{NP}$=$\frac{3}{1}$,
∴$\frac{BM}{MD}=\frac{BN}{NP}$,
∴MN∥PD.
又MN?平面PDC,PD?平面PDC,
∴MN∥平面PDC.

点评 本题主要考查线面垂直的性质以及线面平行的判定,利用相应的判定定理和性质定理是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知点A,B,C,D均在球O的球面上,AB=BC=1,AC=$\sqrt{3}$,若三棱锥D-ABC体积的最大值是$\frac{1}{4}$,则球O的表面积为$\frac{16}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知圆C的圆心在直线x-y=0上,且圆C与两条直线x+y=0和x+y-12=0都相切,则圆C的标准方程是(x-3)2+(y-3)2=18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(2,3),则(2$\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$)=-9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={2,3},B={x|x2-4x+3=0},则A∩B等于(  )
A.{2}B.{3}C.{1}D.{1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.斐波那契数列是:第1项是0,第2项是1,从第三项开始,每一项都等于前两项之和.某同学设计了一个求这个数列的前10项和的程序框图,那么在空白矩形框和判断框内应分别填入的语句是(  )
A.c=a,i≤9B.b=c,i≤9C.c=a,i≤10D.b=c,i≤10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.长为3的线段两端点A,B分别在x轴正半轴和y轴的正半轴上滑动,$\overrightarrow{BP}$=2$\overrightarrow{PA}$,点P的轨迹为曲线C.
(Ⅰ)以直线AB的倾斜角α为参数,写出曲线C的参数方程;
(Ⅱ)求点P到点D(0,-1)距离d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知如图是一个空间几何体的三视图,则该几何体的体积为(  )
 
A.12+$\frac{4π}{3}$B.12+$\frac{16π}{3}$C.4+$\frac{16π}{3}$D.4+$\frac{4π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,过椭圆右焦点且斜率为1的直线与圆(x-2)2+(y-2)2=$\frac{1}{2}$相切.
(1)求椭圆的方程;
(2)设过椭圆右焦点F且与x轴不垂直的直线l与椭圆交于点A,B,与y轴交于点C,且AB中点与FC的中点重合,求△AOB(O为坐标原点)的面积.

查看答案和解析>>

同步练习册答案