精英家教网 > 高中数学 > 题目详情
6.已知点A,B,C,D均在球O的球面上,AB=BC=1,AC=$\sqrt{3}$,若三棱锥D-ABC体积的最大值是$\frac{1}{4}$,则球O的表面积为$\frac{16}{3}$π.

分析 确定∠ABC=120°,S△ABC=$\frac{\sqrt{3}}{4}$,利用三棱锥D-ABC的体积的最大值为$\frac{1}{4}$,可得D到平面ABC的最大距离,再利用射影定理,即可求出球的半径,即可求出球O的表面积.

解答 解:设△ABC的外接圆的半径为r,则
∵AB=BC=1,AC=$\sqrt{3}$,∴∠ABC=120°,S△ABC=$\frac{\sqrt{3}}{4}$,
∴2r=$\frac{\sqrt{3}}{sin120°}$=2
∵三棱锥D-ABC的体积的最大值为$\frac{1}{4}$,
∴D到平面ABC的最大距离为$\sqrt{3}$,
设球的半径为R,则12=$\sqrt{3}$×(2R-$\sqrt{3}$),
∴R=$\frac{2\sqrt{3}}{3}$,
∴球O的表面积为4πR2=$\frac{16}{3}$π.
故答案为:$\frac{16}{3}$π.

点评 本题考查球的半径与表面积,考查体积的计算,确定D到平面ABC的最大距离是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\left\{\begin{array}{l}{x,x≥1}\\{\frac{1}{x},0<x<1}\end{array}\right.$,g(x)=af(x)-|x-2|,a∈R.
(Ⅰ)当a=0时,若g(x)≤|x-1|+b对任意x∈(0,+∞)恒成立,求实数b的取值范围;
(Ⅱ)当a=1时,求函数y=g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设等差数列{an}的前n项和为Sn,已知a7=4,a19=2a9,数列{bn}的前n项和为Tn,满足${4}^{{2a}_{n}-1}$=λTn-(a5-1)(n∈N*
(1)问是否存在非零实数λ,使得数列{bn}为等比数列?并说明理由;
(2)已知对于n∈N*,不等式$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$<M恒成立,求实数M的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在直三棱柱ABC-A1B1C1中,AB=BC=2BB1,∠ABC=90°,D为BC的中点.
(Ⅰ)求证:A1B∥平面ADC1
(Ⅱ)求二面角C-AD-C1的余弦值;
(Ⅲ)若E为A1B1的中点,求AE与DC1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>)的离心率为$\frac{\sqrt{2}}{2}$,且经过点M(2,$\sqrt{2}$),求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.给出函数f(x)的数值对应表:
x1-2324-4
y345410
则与f(x)=4对应的自变量的值是(  )
A.-2B.1C.2D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知命题p:对任意x∈R,总有3x>0;命题q:“x>2”是“x>4”的充分不必要条件,则下列命题为真命题的是(  )
A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是$\frac{π}{3}$,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,如果$\overrightarrow{AB}$=$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{AC}$=$\overrightarrow{a}$-3$\overrightarrow{b}$,D 是BC的中点,那么|$\overrightarrow{AD}$|=(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°,点N在线段PB上,且PN=$\sqrt{2}$.
(Ⅰ)求证:BD⊥PC;
(Ⅱ)求证:MN∥平面PDC.

查看答案和解析>>

同步练习册答案