精英家教网 > 高中数学 > 题目详情
11.正△ABC中,过其中心G作边BC的平行线,分别交AB,AC于点B1,C1,将△AB1C1沿B1C1折起到△A1B1C1的位置,使点A1在平面BB1C1C上的射影恰是线段BC的中点M,则二面角A1-B1C1-M的平面角大小是(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

分析 连接A1G,MG,由G为三角形ABC的中心可得B1C1⊥A1G,GM⊥B1C1,故而∠A1GM为二面角A1-B1C1-M的平面角,在Rt△A1GM中,根据A1G和GM的数量关系得出∠A1GM.

解答 解:连接A1G,MG,
∵G是正三角形ABC的中心,B1C1∥BC,
∴B1C1⊥A1G,GM⊥B1C1
∴∠A1GM为二面角A1-B1C1-M的平面角,
∵G是正三角形ABC的中心,
∴A1G=2GM,
又A1M⊥平面BB1C1C,
∴cos∠A1GM=$\frac{GM}{{A}_{1}G}$=$\frac{1}{2}$,
∴∠A1GM=$\frac{π}{3}$.
故选C.

点评 本题考查了二面角的计算,作出二面角的平面角是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx-mx(m∈R).
(I)若m=1,求曲线y=f(x)在点P(1,-1)处的切线方程;
(Ⅱ)讨论函数f(x)在(1,e)上的单调性,;
(Ⅲ)若曲线y=f(x)与x轴交于A(x1,0)、B(x2,0)两点,求证:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,已知直线a∥平面α,在平面α内有一动点P,点A是定直线a上定点,且AP与a所成角为θ(θ为锐角),点A到平面α距离为d,则动点P的轨迹方程为(  )
A.tan2θx2+y2=d2B.tan2θx2-y2=d2C.${y^2}=2d(x-\frac{d}{tanθ})$D.${y^2}=-2d(x-\frac{d}{tanθ})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设A={x||x-1|>2},B={x||x-5|<k},若A∪B=A,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$\overrightarrow{a}$、$\overrightarrow{b}$是两个不共线的向量,若它们起点相同,$\overrightarrow{a}$、$\frac{1}{2}$$\overrightarrow{b}$、t($\overrightarrow{a}$+$\overrightarrow{b}$)三向量的终点在一直线上,则实数t=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,已知AB=4,AC=6,A=60°.
(1)求BC的长;
(2)求sin2C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某个公园有个池塘,其形状为直角△ABC,∠C=90°,AB=2百米,BC=1百米,现在准备养一批供游客观赏的鱼,分别在AB,BC,CA上取点D,E,F,如图,使得EF∥AB,EF⊥ED,在△DEF喂食,求S△DEF的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={y|y=x2-3x+1,x∈[$\frac{3}{2}$,2]},B={x|x+2m≥0};命题p:x∈A,命题q:x∈B,并且p是q的充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.2位女生和3位男生共5位同学站成一排,若女生甲不站两端,3位男生中有且只有两位男生相邻,则不同排法的种数是(  )
A.36B.42C.48D.60

查看答案和解析>>

同步练习册答案