精英家教网 > 高中数学 > 题目详情
设二项式(x-
1
2
)
n
(n∈Nn)展开式的二项式系数和与各项系数和分别为an、bn,则
a1+a2+…+an
b1+b2+…+bn
=
 
考点:二项式定理的应用
专题:二项式定理
分析:首先利用条件求得an、bn,再利用等比数列的求和公式计算所给的式子,可得结果.
解答: 解:由于二项式(x-
1
2
)
n
(n∈Nn)展开式的二项式系数和与各项系数和分别为an、bn
则an =2n,bn =(1-
1
2
)
n
=2-n
a1+a2+…+an
b1+b2+…+bn
=
21+22+23+…+2n
2-1+2-2+2-3+…+2-n
=
2(1-2n)
1-2
2-1(1-2-n)
1-2-1
=
2n+1-2
1-2-n
=
2(2n-1)•2n
2n-1
=2n+1 
故答案为:2n+1
点评:本题主要考查展开式的二项式系数和与各项系数和的区别,等比数列的求和公式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

△ABC的两顶点A(3,7),B(-2,5),若AC的中点在y轴上,BC的中点在x轴上
(1)求点C的坐标;
(2)求AC边上的中线BD的长及直线BD的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=tan2x,求满足f(x)>0在(
π
4
4
)上的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2a10=9,则a5+a7(  )
A、有最小值6
B、有最大值6
C、有最小值6或最大值-6
D、有最大值-6

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(x+1)|log2x|-1的零点个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

在平形四边形ABCD中,已知
AC
DC
对应的复数分别为z1=3+5i,z2=-1+2i.
(1)求
BC
对应的复数;
(2)求
BD
对的应的复数;
(3)求平行四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)、g(x)均为(a、b)上的可导函数,在[a,b]上连续且f′(x)<g′(x),则f(x)-g(x)的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,(a+c)(a-c)=b(b+
2
c),则A=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+bx+c(b,c∈R),g(x)=2x+b,且对于任意x∈R,恒有g(x)≤f(x).
(1)证明:c≥1,c≥|b|
(2)设函数h(x)满足:f(x)+h(x)=(x+c)2.证明:函数h(x)在(0,+∞)内没有零点.

查看答案和解析>>

同步练习册答案