精英家教网 > 高中数学 > 题目详情
14.若不等式$\frac{{a}^{2}+a+2}{x}$$<\frac{1}{{x}^{2}}$+1对任意x∈(0,+∞)恒成立,则复数z=a+i27在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 把原不等式化为a2+a+2<$\frac{1}{x}$+x,求出$\frac{1}{x}$+x的最小值,从而求出a的取值范围,
再求复数z在复平面上对应的点位于哪一象限.

解答 解:∵x∈(0,+∞),
∴不等式$\frac{{a}^{2}+a+2}{x}$$<\frac{1}{{x}^{2}}$+1可化为
a2+a+2<$\frac{1}{x}$+x,
且该不等式对任意x∈(0,+∞)恒成立,
又$\frac{1}{x}$+x≥2恒成立,
∴a2+a+2<2,
解得-1<a<0;
∴复数z=a+i27=a-i,
在复平面上对应的点位于第三象限.
故选:C.

点评 本题考查了不等式的解法和应用问题,也考查了复数的概念与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知正项数列{an}的前n项和为Sn,且a2an=S1+Sn对一切正整数n都成立.
(1)求a1,a2的值;
(2)若数列{$\frac{{a}_{1}}{(n+2)lo{g}_{2}{a}_{n+1}}$}的前n项和为Tn,求证:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.解方程:($\frac{3}{q}$)2+(3)2+(3q)2=91.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$\frac{1}{a}$+$\frac{1}{2b}$+$\frac{1}{3c}$=1,求证:a+2b+3c≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知圆心(2,-3),一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是(  )
A.x2+y2-4x+6y=0B.x2+y2-4x+6y-8=0C.x2+y2-4x-6y=0D.x2+y2-4x-6y-8=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.求证:一个三角形中,至少有一个内角不小于60°,用反证法证明时的假设为“三角形的(  )”.
A.三个内角不都小于60°B.三个内角都小于或等于60°
C.三个内角都大于60°D.三个内角都小于60°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如果一条直线垂直于一个平面内的:
①三角形的两边;②梯形的两边;③圆的两条直径;④正六边形的两条边,则能保证该直线与平面垂直的是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C:ρcos2θ=asinθ(a>0),直线l:$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)若曲线C与直线l只有一个公共点,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下面每个选项的2个边长为1的正△ABC的直观图不是全等三角形的一组是(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案