精英家教网 > 高中数学 > 题目详情
(2011•江西模拟)已知命题p:|x+1|>2,q:x≥a,且¬p是¬q的充分不必要条件,则a的取值范围是(  )
分析:通过解绝对值不等式先化简命题p,根据互为逆否命题的真假一致,将?p是?q的充分不必要条件转化为q是p的充分不必要条件,再将p,q的条件关系转化为集合关系,求出a的范围.
解答:解:p:|x+1|>2即x>1或x<-3
∵?p是?q的充分不必要条件
∴q是p的充分不必要条件
∴{x|x≥a}?{x|x>1或x<-3}
∴a<1
故选D
点评:解决命题间的条件问题,应该先化简各个命题;若命题是否定的形式往往根据互为逆否的命题真假一致转化为肯定形式的命题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•江西模拟)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=
3
bc
sinC=2
3
sinB
,则A=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江西模拟)已知数列{an},{bn}分别是等差、等比数列,且a1=b1=1,a2=b2,a4=b3≠b4
①求数列{an},{bn}的通项公式;
②设Sn为数列{an}的前n项和,求{
1
Sn
}的前n项和Tn
③设Cn=
anbn
Sn+1
(n∈N),Rn=C1+C2+…+Cn,求Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江西模拟)已知数列{an}满足an+1=
2an
an+2
(n∈N*),a2011=
1
2011

(1)求{an}的通项公式;
(2)若bn=
4
an
-4023
cn=
b
2
n+1
+
b
2
n
2bn+1bn
(n∈N*)
,求证:c1+c2+…+cn<n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江西模拟)已知函数f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函数g(x)在区间(0,e]上的值域;
(2)是否存在实数a,对任意给定的x0∈(0,e],在区间[1,e]上都存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范围;若不存在,请说明理由.
(3)给出如下定义:对于函数y=F(x)图象上任意不同的两点A(x1,y1),B(x2,y2),如果对于函数y=F(x)图象上的点M(x0,y0)(其中x0=
x1+x22
)
总能使得F(x1)-F(x2)=F'(x0)(x1-x2)成立,则称函数具备性质“L”,试判断函数f(x)是不是具备性质“L”,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江西模拟)设a∈R,f(x)=cosx(asinx-cosx)+cos2(
π
2
-x)
满足f(-
π
3
)=f(0)

(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)设△ABC三内角A,B,C所对边分别为a,b,c且
a2+c2-b2
a2+b2-c2
=
c
2a-c
,求f(x)在(0,B]上的值域.

查看答案和解析>>

同步练习册答案