【题目】已知数列的首项,.
(1)证明:数列是等比数列;
(2)求数列的前项和为.
【答案】(Ⅰ) , ,
,又, ,
数列是以为首项,为公比的等比数列. …………5分
(Ⅱ)由(Ⅰ)知,即, ……………7分
. ……………8分
设…, ① …………10分
则…,② ……………………11分
由①②得
…, ……12分
.又…. ……13分
【解析】试题分析:(1)由,可得,即可证明数列是等比数列;(2)由由(1)知, ,利用分组求和,再利用错位相减法,即可求出数列的前项和.
试题解析:(1) , , ,又, , 数列是以为首项,为公比的等比数列.
(2)由(1)知,即, .设…, ① 则…,② 由①②得, .又…. 数列的前项和 .
【 方法点睛】本题主要考查根据递推公式求数列的通项以及分组求和、错位相减法求数列的前 项和,属于中档题.一般地,如果数列是等差数列,是等比数列,求数列的前项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列的公比,然后作差求解, 在写出“”与“” 的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式.
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)求函数在上的最小值;
(2)对一切,恒成立,求实数的取值范围;
(3)探讨函数是否存在零点?若存在,求出函数的零点;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】东亚运动会将于2013年10月6日在天津举行.为了搞好接待工作,组委会打算学习北京奥运会招募大量志愿者的经验,在某学院招募了16名男志愿者和14名女志愿者,调查发现,男女志愿者中分别有10人和6人喜爱运动,其余人不喜欢运动.
(1)根据以上数据完成以下2×2列联表:
喜爱运动 | 不喜爱运动 | 总计 | |
男 | 10 | 16 | |
女 | 6 | 14 | |
总计 | 30 |
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关?
(3)如果从喜欢运动的女志愿者中(其中恰有4人会外语),抽取2名负责翻译工作,那么抽出的志愿者中至少有1人能胜任翻译工作的概率是多少?
参考公式:K2=,其中
n=a+b+c+d.
参考数据:
P(K2≥k) | 0.40 | 0.25 | 0.10 | 0.010 |
k | 0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现如今,“网购”一词不再新鲜,越来越多的人已经接受并喜欢了这种购物方式,但随之也出现了商品质量不能保证与信誉不好等问题,因此,相关管理部门制定了针对商品质量与服务的评价体系,现从评价系统中选出成功交易200例,并对其评价进行统计:对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(1)依据题中的数据完成下表:
(2)通过计算说明,能否有99.9%的把握认为“商品好评与服务好评”有关;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x)是奇函数,且满足f(x)=f(x+3),f(-2)=-3.若数列{an}中,a1=-1,且前n项和Sn满足=2×+1,则f(a5)+f(a6)=________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+bx为偶函数,数列{an}满足an+1=2f(an-1)+1,且a1=3,an>1.
(1)设bn=log2(an-1),证明:数列{bn+1}为等比数列;
(2)设cn=nbn,求数列{cn}的前n项和Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机抽调了50人,他们年龄的频数分布及支持“生育二胎”人数如下表:
(1)由以上统计数据填下面列联表,并问是否有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异;
(2)若对年龄在的被调查人中各随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,六面体ABCDHEFG中,四边形ABCD为菱形,AE,BF,CG,DH都垂直于平面ABCD.若DA=DH=DB=4,AE=CG=3。
(1)求证:EG⊥DF;
(2)求BE与平面EFGH所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.
(1)求M的轨迹方程;
(2)当|OP|=|OM|时,求l的方程及△POM的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com