| A. | an=$\frac{1}{n+1}$ | B. | an=$\frac{1}{2}$+$\frac{n-1}{{n}^{2}+n+2}$ | ||
| C. | an=$\frac{n+1}{n+2}$ | D. | an=$\frac{n}{n+1}$ |
分析 由an+1=an+$\frac{1}{(n+1)(n+2)}$(n∈N*),可得an+1-an=$\frac{1}{n+1}$-$\frac{1}{n+2}$,利用an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1即可得出.
解答 解:∵an+1=an+$\frac{1}{(n+1)(n+2)}$(n∈N*),∴an+1-an=$\frac{1}{n+1}$-$\frac{1}{n+2}$,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=$(\frac{1}{n}-\frac{1}{n+1})$+$(\frac{1}{n-1}-\frac{1}{n})$…+$(\frac{1}{2}-\frac{1}{3})$+$\frac{1}{2}$
=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$.(n=1时也成立).
故选:D.
点评 本题考查了“裂项求和”方法、递推关系,考查了变形能力、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\frac{12\sqrt{13}}{13}$ | D. | $\frac{28\sqrt{13}}{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①③ | B. | ②③ | C. | ②④ | D. | ③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com