精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD中,底面ABCD为菱形,∠DAB=60°,平面PCD⊥底面ABCD,E是AB的中点,G为PA上的一点.
(1)求证:平面GDE⊥平面PCD;
(2)若PC∥平面DGE,求
PG
GA
的值.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:空间位置关系与距离
分析:(1)连接BD,由已知结合面面垂直的性质定理可证得DE⊥平面PCD,进而再由面面垂直的判定定理可得平面GDE⊥平面PCD;
(2)当PG=2GA,即
PG
GA
=2时,PC∥平面DGE,连接AC交FD与点M,交BE于点N,连接MG,利用线面平行判定定理,可证得结论.
解答: 证明:(1)连接BD,

∵底面ABCD为菱形,∠DAB=60°
∴△ABD为等边三角形,
∵E为AB的中点,
∴DE⊥AB,即DE⊥CD,
∵平面PCD⊥底面ABCD,平面PCD∩底面ABCD=CD,DE?平面ABCD,
∴DE⊥平面PCD,
又∵DE?平面GDE,
∴平面GDE⊥平面PCD;
(2)当PG=2GA,即
PG
GA
=2时,PC∥平面DGE,理由如下:
连接AC交ED与点M,连接MG
则△AEM∽△CDM,
∵E为AB的中点,
MC
AM
=
CD
AE
=2,
又∵
PG
GA
=2
∴PC∥MG
又∵PC?平面DGF,GM?平面DGF,
∴PC∥平面DGF
点评:本题主要考查了直线与平面垂直的判定,以及直线与平面平行的判定,考查空间想象能力、运算能力和推理论证能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图:四边形ABCD是梯形,AB∥CD,AD⊥CD,三角形ADE是等边三角形,且平面ABCD⊥平面ADE,EF∥AB,CD=2AB=2AD=2EF=4,
CG
=
2
3
CF

(1)求证:AF∥平面BDG;
(2)求二面角C-BD-G的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(
1
2
x-
π
3
),x∈R,
(1)求f(
3
)的值;
(2)设α,β∈[0,
π
2
],f(2α+
3
)=
10
13
,f(2β+
3
)=
6
5
,α,β∈[0,
π
2
],求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为平行四边形,AB=1,AC=1,BC=
2
,点E在PC上,AE⊥PC.
(Ⅰ)证明:PC⊥平面ABE;
(Ⅱ)若∠PDC的大小为60度,求二面角B-AE-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinx+siny=
1
3
,求siny-cos2x的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n是正整数,f(x)=(1+x)m+(1+x)n的展开式中x的系数为7,求f(x)展开式中x2的系数的最小值,并求这时f(0.003)的近似值(精确到0.01).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱(侧棱和底面垂直的棱柱)ABC-A1B1C1中,AB=AC=AA1=3a,BC=2a,D是BC的中点,F是CC1上一点,且CF=2a.
(Ⅰ)求证:B1F⊥平面ADF;
(Ⅱ)求二面角F-AD-C的正切值;
(Ⅲ)试在AA1上找一点E,使得BE∥平面ADF,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面PAC⊥平面ABC,AC⊥BC,△PAC为等边三角形,PE∥CB,M,N分别是线段AE,AP上的动点,且满足:
AM
AE
=
AN
AP
(0<λ<1).
(Ⅰ) 求证:MN∥平面ABC;
(Ⅱ) 当λ=
1
2
时,求平面ABC与平面MNC所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面α和β是空间中两个不同的平面,下列叙述中,正确的是
 
.(填序号)
①因为M∈α,N∈α,所以MN∈α;
②因为M∈α,N∈β,所以α∩β=MN;
③因为AB?α,M∈AB,N∈AB,所以MN∈α;
④因为AB?α,AB?β,所以α∩β=AB.

查看答案和解析>>

同步练习册答案