精英家教网 > 高中数学 > 题目详情
18.设数列{an}的前n项和为Sn(n∈N*),且满足:
①|a1|≠|a2|;
②r(n-p)Sn+1=(n2+n)an+(n2-n-2)a1,其中r,p∈R,且r≠0.
(1)求p的值;
(2)数列{an}能否是等比数列?请说明理由;
(3)求证:当r=2时,数列{an}是等差数列.

分析 (1)n=1时,r(1-p)(a1+a2)=2a1-2a1,其中r,p∈R,且r≠0.又|a1|≠|a2|.可得1-p=0,解得p.
(2)设an=kan-1(k≠±1),r(n-1)Sn+1=(n2+n)an+(n2-n-2)a1,可得rS3=6a2,2rS4=12a3+4a1,化为:r(1+k+k2)=6k,r(1+k+k2+k3)=6k2+2.联立解得r,k,即可判断出结论.
(3)r=2时,2(n-1)Sn+1=(n2+n)an+(n2-n-2)a1,可得2S3=6a2,4S4=12a3+4a1,6S5=20a4+10a1.化为:a1+a3=2a2,a2+a4=2a3,a3+a5=2a4.假设数列{an}的前n项成等差数列,公差为d.利用已知得出an+1,即可证明.

解答 解:(1)n=1时,r(1-p)(a1+a2)=2a1-2a1,其中r,p∈R,且r≠0.又|a1|≠|a2|.
∴1-p=0,解得p=1.
(2)设an=kan-1(k≠±1),r(n-1)Sn+1=(n2+n)an+(n2-n-2)a1,∴rS3=6a2,2rS4=12a3+4a1
化为:r(1+k+k2)=6k,r(1+k+k2+k3)=6k2+2.联立解得r=2,k=1(不合题意),舍去,因此数列{an}不是等比数列.
(3)证明:r=2时,2(n-1)Sn+1=(n2+n)an+(n2-n-2)a1,∴2S3=6a2,4S4=12a3+4a1,6S5=20a4+10a1
化为:a1+a3=2a2,a2+a4=2a3,a3+a5=2a4.假设数列{an}的前n项成等差数列,公差为d.
则2(n-1)$[n{a}_{1}+\frac{n(n-1)}{2}d+{a}_{n+1}]$=(n2+n)[a1+(n-1)d]+(n2-n-2)a1,化为an+1=a1+(n+1-1)d,
因此第n+1项也满足等差数列的通项公式,
综上可得:数列{an}成等差数列.

点评 本题考查了等差数列与等比数列的通项公式求和公式及其性质、数列递推关系、数学归纳法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,已知直线$\left\{\begin{array}{l}{x=-\frac{3}{2}+\frac{\sqrt{2}}{2}l}\\{y=\frac{\sqrt{2}}{2}l}\end{array}\right.$(l为参数)与曲线$\left\{\begin{array}{l}{x=\frac{1}{8}{t}^{2}}\\{y=t}\end{array}\right.$(t为参数)相交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.根据如图的程序框图,当输入x为2017时,输出的y为28,则判断框中的条件可以是(  )
A.x≥0?B.x≥1?C.x≥-1?D.x≥-3?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.($\sqrt{x}$+3)($\sqrt{x}$-$\frac{2}{x}$)5的展开式中的常数项为40.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.理科竞赛小组有9名女生、12名男生,从中随机抽取一个容量为7的样本进行分析.
(Ⅰ)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可)
(Ⅱ)如果随机抽取的7名同学的物理、化学成绩(单位:分)对应如表:
 学生序号 1 2 3 4 5 6 7
 物理成绩 65 70 75 81 85 87 93
 化学成绩 72 68 80 85 90 86 91
规定85分以上(包括85份)为优秀,从这7名同学中再抽取3名同学,记这3名同学中物理和化学成绩均为优秀的人数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合A=[-1,2],B={y|y=x2,x∈A},则A∩B=(  )
A.[1,4]B.[1,2]C.[-1,0]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某项科研活动共进行了5次试验,其数据如表所示:
 特征量 第1次 第2次 第3次 第4次 第5次
 x 555559  551 563 552
 y 601605 597 599 598 
(Ⅰ)从5次特征量y的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;
(Ⅱ)求特征量y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;并预测当特征量x为570时特征量y的值.
(附:回归直线的斜率和截距的最小二乘法估计公式分别为$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=xcosx-\frac{a}{x}sinx-sinx,x∈({-kπ,0})∪({0,kπ})$(其中k为正整数,a∈R,a≠0),则f(x)的零点个数为(  )
A.2k-2B.2kC.2k-1D.与a有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某几何体的三视图如图所示,且该几何体的体积是12,则正视图中的x的值是(  )
A.3B.4C.9D.6

查看答案和解析>>

同步练习册答案