精英家教网 > 高中数学 > 题目详情
5.在平面直角坐标系xOy中,已知直线$\left\{\begin{array}{l}{x=-\frac{3}{2}+\frac{\sqrt{2}}{2}l}\\{y=\frac{\sqrt{2}}{2}l}\end{array}\right.$(l为参数)与曲线$\left\{\begin{array}{l}{x=\frac{1}{8}{t}^{2}}\\{y=t}\end{array}\right.$(t为参数)相交于A,B两点,求线段AB的长.

分析 先把方程化为普通方程,再联立,利用弦长公式,即可求线段AB的长.

解答 解:直线$\left\{\begin{array}{l}{x=-\frac{3}{2}+\frac{\sqrt{2}}{2}l}\\{y=\frac{\sqrt{2}}{2}l}\end{array}\right.$(l为参数)与曲线$\left\{\begin{array}{l}{x=\frac{1}{8}{t}^{2}}\\{y=t}\end{array}\right.$(t为参数)的普通方程分别为x-y=-$\frac{3}{2}$,y2=8x,
联立可得x2-5x+$\frac{9}{4}$=0,
∴|AB|=$\sqrt{2}•\sqrt{25-9}$=4$\sqrt{2}$.

点评 本题考查参数方程化为普通方程,考查弦长的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设复数z满足iz=1+2i,则z的共轭复数的虚部为(  )
A.iB.-iC.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知复数z=$\frac{3-i}{1+i}$,其中i为虚数单位,则复数z的模是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将函数y=cos(x-$\frac{π}{3}$)的图象上各点横坐标伸长到原来的2倍(纵坐标不变),再向左平移$\frac{π}{6}$个单位,所得函数图象的一条对称轴是(  )
A.x=$\frac{π}{4}$B.x=$\frac{π}{6}$C.x=πD.x=$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某超市经营一批产品,在市场销售中发现此产品在30天内的日销售量P(件)与日期t(1≤t≤30,t∈N+))之间满足P=kt+b,已知第5日的销售量为55件,第10日的销售量为50件.
(1)求第20日的销售量;                
(2)若销售单价Q(元/件)与t的关系式为$Q=\left\{\begin{array}{l}t+20,1≤t<25\\ 80-t,25≤t≤30\end{array}\right.(t∈{N^+})$,求日销售额y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-4,x>2}\\{\sqrt{-{x}^{2}+2x},0≤x≤2}\end{array}\right.$若F(x)=f(x)-kx-3k在其定义域内有3个零点,则实数k的取值范围是(0,$\frac{\sqrt{15}}{15}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1,F2,以F1F2为直径的圆与双曲线左支的一个交点为P,若以OF1(O为坐标原点)为直径的圆与PF2相切,则双曲线C的离心率为(  )
A.$\sqrt{2}$B.$\frac{-3+6\sqrt{2}}{4}$C.$\sqrt{3}$D.$\frac{3+6\sqrt{2}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是$\frac{1}{3}$.
(1)求这支篮球队首次胜场前已经负了两场的概率;
(2)求这支篮球队在6场比赛中恰好胜了3场的概率;
(3)求这支篮球队在6场比赛中胜场数的期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设数列{an}的前n项和为Sn(n∈N*),且满足:
①|a1|≠|a2|;
②r(n-p)Sn+1=(n2+n)an+(n2-n-2)a1,其中r,p∈R,且r≠0.
(1)求p的值;
(2)数列{an}能否是等比数列?请说明理由;
(3)求证:当r=2时,数列{an}是等差数列.

查看答案和解析>>

同步练习册答案