精英家教网 > 高中数学 > 题目详情
6.($\sqrt{x}$+3)($\sqrt{x}$-$\frac{2}{x}$)5的展开式中的常数项为40.

分析 把($\sqrt{x}$-$\frac{2}{x}$)5按照二项式定理展开,可得($\sqrt{x}$+3)($\sqrt{x}$-$\frac{2}{x}$)5的展开式中的常数项.

解答 解:($\sqrt{x}$+3)($\sqrt{x}$-$\frac{2}{x}$)5 =($\sqrt{x}$+3)(${C}_{5}^{0}$${x}^{\frac{5}{2}}$-${C}_{5}^{1}$•2x+${C}_{5}^{2}$•4${x}^{-\frac{1}{2}}$-${C}_{5}^{3}$•8x-2+${C}_{5}^{4}$•16${x}^{-\frac{7}{2}}$-${C}_{5}^{5}$•32x-5),
故展开式中的常数项为 ${C}_{5}^{2}$•4=40,
故答案为:40.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.将函数y=cos(x-$\frac{π}{3}$)的图象上各点横坐标伸长到原来的2倍(纵坐标不变),再向左平移$\frac{π}{6}$个单位,所得函数图象的一条对称轴是(  )
A.x=$\frac{π}{4}$B.x=$\frac{π}{6}$C.x=πD.x=$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是$\frac{1}{3}$.
(1)求这支篮球队首次胜场前已经负了两场的概率;
(2)求这支篮球队在6场比赛中恰好胜了3场的概率;
(3)求这支篮球队在6场比赛中胜场数的期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数 f(x)=$\frac{a}{x}$+xlnx,g(x)=x3-x2-5,若对任意的x1,x2∈[$\frac{1}{2}$,2],都有f(x1)-g(x2)≥2成立,则a的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若实数x、y满足条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-2≥0}\\{x≤1}\end{array}\right.$,则log2(2x+y)的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图是某几何体的三视图,则该几何体的体积为(  )
A.12B.15C.18D.21

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设数列{an}的前n项和为Sn(n∈N*),且满足:
①|a1|≠|a2|;
②r(n-p)Sn+1=(n2+n)an+(n2-n-2)a1,其中r,p∈R,且r≠0.
(1)求p的值;
(2)数列{an}能否是等比数列?请说明理由;
(3)求证:当r=2时,数列{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.两位同学约定下午5:30~6:00在图书馆见面,且他们在5:30~6:00之间到达的时刻是等可能的,先到的同学须等待,15分钟后还未见面便离开,则两位同学能够见面的概率是(  )
A.$\frac{11}{36}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α为参数,-π<α<0),曲线C2的参数方程为$\left\{\begin{array}{l}{x=\frac{1}{2}-\frac{\sqrt{3}}{2}t}\\{y=5+\sqrt{3}t}\end{array}\right.$(t为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1的极坐标方程和曲线C2的普通方程;
(2)射线θ=-$\frac{π}{4}$与曲线C1的交点为P,与曲线C2的交点为Q,求线段PQ的长.

查看答案和解析>>

同步练习册答案