【题目】设
、
是两条不同的直线,
、
是两个不同的平面,则下列四个命题:
①若
,
,则
∥
②若
∥
,
,则![]()
③若
,
,则
∥
④若
,
,
,则![]()
其中正确的命题序号是________
科目:高中数学 来源: 题型:
【题目】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.
|
|
|
|
|
|
企业数 | 2 | 24 | 53 | 14 | 7 |
(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;
(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)
附:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若实数
满足
,称
为函数
的不动点.有下面三个命题:(1)若
是二次函数,且没有不动点,则函数
也没有不动点;(2)若
是二次函数,则函数
可能有
个不动点;(3)若
的不动点的个数是
,则
的不动点的个数不可能是
;它们中所有真命题的序号是________________________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对定义在
上的函数
和常数
,
,若
恒成立,则称
为函数
的一个“凯森数对”.
(1)若
是
的一个“凯森数对”,且
,求
;
(2)已知函数
与
的定义域都为
,问它们是否存在“凯森数对”?分别给出判断并说明理由;
(3)若
是
的一个“凯森数对”,且当
时,
,求
在区间
上的不动点个数(函数
的不动点即为方程
的解).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C过点M(0,-2)、N(3,1),且圆心C在直线x+2y+1=0上.
(1)求圆C的方程;
(2)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
,若存在区间
,使得
,则称函数
为“可等域函数”,区间A为函数的一个“可等域区间”.给出下列四个函数:①
;②
;③
;④
.其中存在唯一“可等域区间”的“可等域函数”的个数是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】欧拉公式
(
为虚数单位,
,
为自然底数)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,
表示的复数在复平面中位于( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知ABCD为梯形,AB∥CD,CD=2AB,M为线段PC上一点.
![]()
(1)设平面PAB∩平面PDC=l,证明:AB∥l;
(2)在棱PC上是否存在点M,使得PA∥平面MBD,若存在,请确定点M的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四边形
的四个顶点在椭圆
:
上,对角线
所在直线的斜率为
,且
,
.
(1)当点
为椭圆
的上顶点时,求
所在直线方程;
(2)求四边形
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com