精英家教网 > 高中数学 > 题目详情

如图,四棱锥P―ABCD中,PB⊥底面ABCD,CD⊥PD.底面ABCD为直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3.点E在棱PA上,且PE=2EA.

(Ⅰ)求异面直线PA与CD所成的角;

(Ⅱ)求证:PC∥平面EBD;

(Ⅲ)求二面角A―BE―D的大小(用反三角函数表示).

解法一:

(Ⅰ)∵PB⊥底面ABCD,CD⊥PD,∴CD⊥BD

在直角梯形ABCD中,AB=AD=3,∴BC=6

取BC的中点F,连结PF,则AF//CD.

∴异面直线PA和CD所成的角就是PA和AF所成的角∠PAF

在△PAF中,

即异面直线PA和CD所成的角是

(Ⅱ)连结AC交BD于G,连结EG,

(Ⅲ)∵PB⊥平面ABCD,∴AD⊥PB.

又∵AD⊥AB,∴AD⊥平面EAB.

作AE⊥BE,垂足为H,连结DH,则DH⊥BE,

∴∠AHD是二面角A―BE―D的平面角.……10分

解法二:

(Ⅰ)建立如图所示的直角坐标系B―xyz.

(Ⅱ)设平面BED的法向量为

,从而

(Ⅲ)平面BED的法向量为

又因为平面ABE的法向量

 所以

所以,二面角A―BE―D的大小数点为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案