精英家教网 > 高中数学 > 题目详情
13.已知0<a<1,分别在区间(0,a)和(0,4-a)内任取一个数,且取出的两数之和小于1的概率为$\frac{3}{16}$.则a的值为$\frac{4}{5}$.

分析 分类讨论,分别计算其面积,由几何概型的计算公式可得答案.

解答 解:由题意,$\frac{\frac{1}{2}}{a(4-a)}$=$\frac{3}{16}$,∴a=$\frac{6±2\sqrt{3}}{3}$,不合题意;
$\frac{\frac{1}{2}(1-a+1)a}{a(4-a)}$=$\frac{3}{16}$,∴a=$\frac{4}{5}$.
故答案为:$\frac{4}{5}$.

点评 本题考查几何概型的计算,解题的关键在于用平面区域表示出题干的代数关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.定义在[-1,1]上的奇函数f(x)有最小正周期2,当0<x<1时,f(x)=$\frac{2^x}{{{4^x}+1}}$.
(1)讨论f(x)在(0,1)上的单调性;
(2)求f(x)在[-1,1]的表达式;
(3)函数y=f(x)-a有零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.奇函数f(x)当x∈(0,+∞)时的解析式为f(x)=x2-x+2,则f(-1)=(  )
A.-2B.2C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.有一个容量为100的样本,数据的分组及各组的频数如下:
[12,14),6;[14,16),16;[16,18),18;[18,20),22; 
[20,22),20;[22,24),10;[24,26),8;
(1)列出样本的频率分布表;
(2)画出频率分布直方图和频率折线图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若全集U={1,2,3,4}且∁UA={1},则集合A的真子集共有(  )
A.3个B.5个C.7个D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求函数f(x)的解析式.
(1)已知f(x)是一次函数,且满足3f(x+1)-2f(x)=2x+17
(2)已知f($\frac{x+1}{x}$)=$\frac{{x}^{2}+x+1}{{x}^{2}}$,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是平面内两个不共线的向量,$\overrightarrow{a}$=3$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=-2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{c}$=7$\overrightarrow{{e}_{1}}$-4$\overrightarrow{{e}_{2}}$,试用$\overrightarrow{a}$、$\overrightarrow{b}$表示$\overrightarrow{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在Rt△ABC中,∠A=60°,AB=6,点D、E是斜边AB上两点.
(1)当点D是线段AB靠近A的一个三等分点时,求$\overrightarrow{CD}•\overrightarrow{CA}$的值;
(2)当点D、E在线段AB上运动时,且∠DCE=30°,设∠ACD=θ.试用θ表示△DCE的面积S,并求S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若${∫}_{\;}^{\;}$${\;}_{0}^{T}$x2dx=9,则常数T的值为(  )
A.9B.-3C.3D.1

查看答案和解析>>

同步练习册答案