精英家教网 > 高中数学 > 题目详情
17.已知二次函数f(x)=ax2+bx+c满足如下条件:
①图象过原点;
②f(-x+2012)=f(x-2010);
③方程f(x)=x有重根;
求:
(1)f(x)的解析式;
(2)是否存在实数m、n(m<n),使f(x)的定义域和值域分别是[m,n]和[3m,3n],若存在,求出m、n的值;若不存在,请说明理由.

分析 (1)由已知中f (1+x)=f (1-x),可得f(x)的图象关于直线x=1对称,结合方程f (x)=x有等根其△=0,我们可构造关于a,b的方程组,解方程组求出a,b的值,即可得到f (x)的解析式;
(2)由(1)中函数的解析式,我们根据f(x)的定义域和值域分别为[m,n]和[3m,3n],我们易判断出函数在[m,n]的单调性,进而构造出满足条件的方程,解方程即可得到答案.

解答 解:(1)∵图象过原点,∴c=0.
∵f(x)满足f(-x+2012)=f(x-2010),∴f(x)的图象关于直线x=1对称.
而二次函数f(x)的对称轴为x=-$\frac{b}{2a}$,∴-$\frac{b}{2a}$=1.①
又f(x)=x有等根,即ax2+(b-1)x=0有等根,∴△=(b-1)2=0.②
由①,②得 b=1,a=-$\frac{1}{2}$.∴f(x)=-$\frac{1}{2}$x2+x.
(2)∵f(x)=-$\frac{1}{2}$x2+x=-$\frac{1}{2}$(x-1)2+$\frac{1}{2}$≤$\frac{1}{2}$.
如果存在满足要求的m,n,则必需3n≤$\frac{1}{2}$,∴n≤$\frac{1}{6}$.
从而m<n≤$\frac{1}{6}$<1,而x≤1,f(x)单调递增,
∴$\left\{\begin{array}{l}{f(m)=-\frac{1}{2}{m}^{2}+m=3m}\\{f(n)=-\frac{1}{2}{n}^{2}+n=3n}\end{array}\right.$,
可解得m=-4,n=0满足要求.
∴存在m=-4,n=0满足要求.

点评 本题考查的知识点是二次函数的性质,其中(1)的关键是由已知条件构造关于a,b的方程组,(2)的关键是根据函数的值域判断出函数在[m,n]的单调性,进而构造出满足条件的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知f(x)是二次函数且f(0)=2,f(2-x)-f(x)=0,f(1)=-2,则f(x)=4x2-8x+2.(提示:已知函数模型.可用待定系数法)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△OAB中,D是线段AB的中点,过点A的直线l∥OD,P是直线l上的动点,若$\overrightarrow{OP}$=λ1$\overrightarrow{OA}$+λ2$\overrightarrow{OB}$,则λ12=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数f(x)=2ax2-2bx-a+b(a,b∈R,a>0),若θ∈[0,$\frac{π}{2}$]时,求f(sinθ)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{BC}$>0,则角B的取值范围是(  )
A.[$\frac{π}{2}$,π)B.($\frac{π}{2}$,π)C.(0,$\frac{π}{2}$]D.(0,$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某人站在离地面10米的高处A向下扔下一个球,(x轴是地平面)球下落轨迹是抛物线 y=ax2+10,欲使球落在区间(4,5)内,a应该在什么范围内取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算下列各式:
(1)|1+lg0.001|+$\sqrt{{lg}^{2}\frac{1}{2}-4lg2+4}$+lg6-lg0.03;
(2)(0.001)${\;}^{-\frac{1}{3}}$+(27)${\;}^{\frac{2}{3}}$-($\frac{1}{4}$)${\;}^{-\frac{1}{2}}$+($\frac{1}{9}$)-1.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.甲袋有1个黑球,2个白球,乙袋中有3个白球,每次从两袋中各取一个,交换放入另一袋中,求交换n次后,黑球仍在甲袋中的概率$\frac{1}{6}×(\frac{1}{3})^{n-1}$+$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$(n∈N*),判断数列{f(n)}的单调性.

查看答案和解析>>

同步练习册答案