精英家教网 > 高中数学 > 题目详情
5.函数f(x)=2ax2-2bx-a+b(a,b∈R,a>0),若θ∈[0,$\frac{π}{2}$]时,求f(sinθ)的最大值.

分析 令sinθ=t∈[0,1],问题等价于求f(t)=2at2-2bt-a+b在t∈[0,1]的最大值,由二次函数区间的最值可得

解答 解:令sinθ=t∈[0,1],问题等价于求f(t)=2at2-2bt-a+b在t∈[0,1]的最大值,
a>0,抛物线开口向上,二次函数的对称轴t=$\frac{b}{2a}$,
由二次函数区间的最值可得f(x)max=$\left\{\begin{array}{l}{f(1)=a-b,b≤a}\\{f(0)=b-a,b>a}\end{array}\right.$=|a-b|.

点评 本题考查二次函数的性质,涉及三角换元和等价转化,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.求y=$\frac{{x}^{2}+2x+3}{x+2}$(x>-2)的最小值,并指出取到最小值时的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,在正方体ABCD-A1B1C1D1中,M是AB上一点,N是A1C的中点,MN⊥平面A1DC,求证:
(1)MN∥AD1
(2)M是AB的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\frac{a}{lo{g}_{a}x}$(a>1)的图象沿着向量$\overrightarrow{a}$=(-2,1)平移后,若在[2,6]中的最大值与最小值的差为$\frac{2a}{3}$,则a的值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=$\overrightarrow{0}$,且|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=1,|$\overrightarrow{c}$|=4,计算:$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{b}$•$\overrightarrow{c}$+$\overrightarrow{c}$•$\overrightarrow{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在平行四边形ABCD中,$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AD}}{|\overrightarrow{AD}|}$=$\overrightarrow{AC}$,$\frac{\overrightarrow{AB}•\overrightarrow{AD}}{|\overrightarrow{AB}||\overrightarrow{AD}|}$=$\frac{1}{2}$,E为CD的中点,若$\overrightarrow{AC}$•$\overrightarrow{BE}$=3,则|$\overrightarrow{AB}$|=2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知二次函数f(x)=ax2+bx+c满足如下条件:
①图象过原点;
②f(-x+2012)=f(x-2010);
③方程f(x)=x有重根;
求:
(1)f(x)的解析式;
(2)是否存在实数m、n(m<n),使f(x)的定义域和值域分别是[m,n]和[3m,3n],若存在,求出m、n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.当x∈[$\frac{π}{6}$,$\frac{7π}{6}$]时,函数y=3-sinx-2cos2x的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知x1、x2是方程2x2+4mx+5m2-12=0的两实根,求x12+x22的最大值和最小值.

查看答案和解析>>

同步练习册答案