精英家教网 > 高中数学 > 题目详情
15.已知x1、x2是方程2x2+4mx+5m2-12=0的两实根,求x12+x22的最大值和最小值.

分析 先根据根的判别式求得m的取值范围,然后由根与系数的关系列出关于m的一元二次方程,最后由方程的性质解答.

解答 解:方程有实根,则△=16m2-8(5m2-12)≥0,
故-4≤m≤4,
又有x1+x2=-2m,x1•x2=$\frac{5}{2}$m2-6,
得x12+x22=(x1+x22-2x1•x2=-m2+12,
因为-4≤m≤4,
故当m=±4,x12+x22的最小值为-4,最大值为12.

点评 本题主要考查了根与系数的关系、根的判别式及一元二次方程的最值.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.函数f(x)=2ax2-2bx-a+b(a,b∈R,a>0),若θ∈[0,$\frac{π}{2}$]时,求f(sinθ)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.甲袋有1个黑球,2个白球,乙袋中有3个白球,每次从两袋中各取一个,交换放入另一袋中,求交换n次后,黑球仍在甲袋中的概率$\frac{1}{6}×(\frac{1}{3})^{n-1}$+$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=$\frac{cos2x}{\sqrt{2}cos(\frac{π}{4}+x)•sinx}$
(1)若tanx=-$\frac{4}{3}$,求f(x)的值;
(2)在△ABC中,角A,B,C的对边分别为a,b,c,若f(A)=1+$\frac{\sqrt{3}}{3}$,b+c=2,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)-2f($\frac{1+x}{1-x}$)=7x,求f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(4,-2),求:
(1)|3$\overrightarrow{a}$+2$\overrightarrow{b}$|;
(2)(2$\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-2$\overrightarrow{b}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$(n∈N*),判断数列{f(n)}的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,试用$\overrightarrow{a}$与$\overrightarrow{b}$表示△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.解方程:2x2+$\frac{2}{{x}^{2}}$-3x-$\frac{3}{x}$-1=0.

查看答案和解析>>

同步练习册答案