精英家教网 > 高中数学 > 题目详情
12.若函数f(x)单调函数,且对任意实数x,均有f[f(x)-ax]=a+1(a≥e,e自然数对数的底数),则${∫}_{0}^{1}$f(x)dx的最小值为(  )
A.e-1B.e+1C.eD.$\frac{1}{e}+1$

分析 由函数为单调函数可知f(x)-ax为常数,不妨设f(x)=ax+c,于是f(c)=a+1,从而解出c,得出f(x)的解析式,利用定积分可得结论.

解答 解:∵函数f(x)是定义在R上的单调函数,不妨设f(c)=a+1,
∴f(x)-ax=c,即f(x)=ax+c.
∴f(c)=ac+c=a+1.∴c=1.∴f(x)=ax+1.
∴${∫}_{0}^{1}$f(x)dx=${∫}_{0}^{1}$(ax+1)dx=($\frac{{a}^{x}}{lna}$+x)${|}_{0}^{1}$=$\frac{a}{lna}$+1-$\frac{1}{lna}$,
∵a≥e,e自然数对数的底数,
∴${∫}_{0}^{1}$f(x)dx的最小值为e
故选:C.

点评 本题考查了函数的单调性的性质,考查定积分知识的运用,属于中档题,求出f(x)解析式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.有300m长的篱笆材料,如果利用已有的一面墙(设长度够用)作为一边,围成一块矩形的菜地,(如图所示)
(1)用长度x表示菜地的面积S;
(2)当矩形的长、宽各为多少时,这块菜地的面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知三次函数f(x)满足f(x)=-f(a-x)其中a为实数,f(x)的导函数为y=f'(x),以下5种说法
①函数y=f(x)是中心对称图形;
②对于任意的非零实数m,n,p,关于x的方程m[f′(x)]2+nf′(x)+p=0的解集都不可能是{1,4,16,64}
③对于任意的非零实数m,n,p,关于x的方程m[f′(x)]2+nf′(x)+p=0的解集有可能是{1,4}
④对于任意的非零实数m,n,p,关于x的方程m|f(x)|2+n|f(x)|+p=0的解集都不可能是{1,2,3,5}
⑤对于任意的非零实数m,n,p,关于x的方程m|f(x)|2+n|f(x)|+p=0的解集有可能是{1,2,4,8,16,32}
正确的是①②③④.(写出所有正确的代号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.$a=\frac{1}{6}$是直线x+2ay-1=0与直线(3a-1)x-ay-1=0平行的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一个体积为8cm3的几何体的三视图如图所示(单位:cm),其中正视图和俯视图是一个等腰直角三角形和一个正方形,侧视图是一个正方形,则这个几何体的表面积是(  )
A.$8+8\sqrt{2}\;c{m^2}$B.$12+8\sqrt{2}\;c{m^2}$C.$16+8\sqrt{2}\;c{m^2}$D.$20+8\sqrt{2}\;c{m^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足$\left\{{\begin{array}{l}{2x-3≥y}\\{y≤4-x}\\{x-2y-4≤0}\end{array}}\right.$,则z=2x+y的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,A,B,C,H四个小朋友在草坪上游戏,根据游戏规则,A,B,C三人围成一个三角形,B,H,C三人共线,H在B,C两人之间.B,C两人相距10m,A,H两人相距hm,AH与BC垂直.
(1)当h=5m时,求A看B,C两人视角的最大值;
(2)当B看A,C视角是C看A,B视角的2倍,求h的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,已知a=$\sqrt{3}$,b=1,∠A=$\frac{π}{3}$,则c=(  )
A.1B.2C.$\sqrt{3}$-1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知定义在(0,+∞)上的函数f(x),满足(1)f(x)>0;(2)f(x)<f′(x)<2f(x)(其中f′(x)是f(x)的导函数,e是自然对数的底数),则$\frac{f(1)}{f(2)}$的范围为(  )
A.($\frac{1}{2{e}^{2}}$,$\frac{1}{e}$)B.($\frac{1}{{e}^{2}}$,$\frac{1}{e}$)C.(e,2e)D.(e,e3

查看答案和解析>>

同步练习册答案