精英家教网 > 高中数学 > 题目详情
(本题满分13分)如图,线段所在直线是异面直线,分别是线段的中点.
(1) 求证:共面且
(2) 设分别是上任意一点,求证:被平面平分.


 
 




证明:(1)分别是的中点.,
.因此,共面.
平面平面
平面.同理平面
(2)设平面,连接,设
所在平面平面
平面平面
是的中位线,
的中点,则的中点,即被平面平分.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知三棱柱ABC-A1B1C1的侧棱垂直于底面,分别是的中点。 (Ⅰ)证明:平面
(Ⅱ)若点P在线段BN上,且三棱锥P-AMN的体积,求的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图(1)所示,一只装了水的密封瓶子,其内部可以看成是由半径为1cm和半径为3cm的两个圆柱组成的简单几何体.当这个几何体如图(2)水平放置时,液面高度为20cm,当这个几何体如图(3)水平放置时,液面高度为28cm,则这个简单几何体的总高度为(  )
A.29cm  B.30cm
C.32cm  D.48cm

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将正方形ABCD沿对角线AC折成一个直二面角,则异面直线AB和CD所成的角是(   )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=AA1=1,D、E分别为棱AB、BC的中点,M为棱AA1上的点。
(1)证明:A1B1⊥C1D;
(2)当的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)正△的边长为4,边上的高,分别是
边的中点,现将△沿翻折成直二面角
(1)试判断直线与平面的位置关系,并说明理由;
(2)求二面角的余弦值;
(3)在线段上是否存在一点,使?证明你的结论.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设a与α分别为空间中的直线与平面,那么下列三个判断中
(1)过a必有唯一平面β与平面α垂直
(2)平面α内必存在直线b与直线a垂直
(3)若直线a上有两点到平面α的距离为1,则a//α,其中正确的个数为(   )
A.3个B.2个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,已知是直角梯形,
平面
(1) 证明:
(2) 若的中点,证明:∥平面
(3)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知l⊥α,mβ,则下面四个命题:
①α∥β则l⊥m     ②α⊥β则l∥m   ③l∥m则α⊥β  ④l⊥m则α∥β
其中正确的是___            _____     

查看答案和解析>>

同步练习册答案