精英家教网 > 高中数学 > 题目详情
(本小题满分14分)正△的边长为4,边上的高,分别是
边的中点,现将△沿翻折成直二面角
(1)试判断直线与平面的位置关系,并说明理由;
(2)求二面角的余弦值;
(3)在线段上是否存在一点,使?证明你的结论.
 
解:法一:(I)如图:在△ABC中,由EF分别是ACBC中点,得EF//AB

AB平面DEFEF平面DEF.    ∴AB∥平面DEF.   
(II)∵ADCDBDCD  
 ∴∠ADB是二面角ACDB的平面角
ADBD   ∴AD⊥平面BCD
CD的中点M,这时EMAD   ∴EM⊥平面BCD       MMNDF于点N,连结EN,则ENDF    ∴∠MNE是二面角EDFC的平面角…………6分
在RtEMN中,EM=1,MN=∴tan∠MNE=,cos∠MNE=   ………8分
(Ⅲ)在线段BC上存在点P,使AP⊥DE……………………10分
证明如下:在线段BC上取点P。使,过P作PQ⊥CD与点Q,
∴PQ⊥平面ACD      ∵在等边△ADE中,∠DAQ=30°
∴AQ⊥DE∴AP⊥DE………………………………13分
法二:(Ⅱ)以点D为坐标原点,直线DB、DC为x轴、y轴,建立空间直角坐标系,则A(0,0,2)B(2,0,0)C(0,……4分
平面CDF的法向量为设平面EDF的法向量为
 即
所以二面角E—DF—C的余弦值为 …8分
(Ⅲ)在平面坐标系xDy中,直线BC的方程为

…………………12分
所以在线段BC上存在点P,使AP⊥DE       …………………………13分
另解:设
       …………………………12分

所以在线段BC上存在点P使AP⊥DE                           …………….14分 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,已知三棱锥P=ABC中,PA⊥PC,D为AB的中点,M为PB的中点,且AB=2PD.
(1)求证:DM//面PAC;
(2)找出三棱锥P—ABC中一组面与面垂直的位置关系,并给出证明(只需找到一组即可).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)已知空间四边形ABCD中,AC=AD,BC=BD,且E是CD的中点,F是BD的中点, (1)求证:BC∥平面AFE   (2)平面ABE⊥平面ACD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)如图,线段所在直线是异面直线,分别是线段的中点.
(1) 求证:共面且
(2) 设分别是上任意一点,求证:被平面平分.


 
 


查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,垂直于矩形所在的平面,分别是的中点.
(I)求证:平面 ;
(Ⅱ)求证:平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

有如下三个命题:
①分别在两个平面内的两条直线一定是异面直线;
②垂直于同一个平面的两条直线是平行直线;
③过平面的一条斜线有一个平面与平面垂直;
其中正确命题的个数为­­­­­­­­­­(   )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面的菱形,
侧面是边长为2的正三角形,且与底面垂直,的中点.
(1)求证:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本小题满分12分)
如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直,点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<).
(1)求MN的长;
(2)当a为何值时,MN的长最小;
(3)当MN的长最小时,求面MNA与面MNB所成的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

   已知等腰直角三角形的斜边长为4cm,以斜边所在直线为旋转轴,两条直角边旋转一周得到的几何体的表面积为         

查看答案和解析>>

同步练习册答案