精英家教网 > 高中数学 > 题目详情

设函数.
(1)当时,求函数的最大值;
(2)令,其图象上存在一点,使此处切线的斜率,求实数的取值范围;
(3)当时,方程有唯一实数解,求的值.

(1)函数的最大值为;(2)实数的取值范围是;(3).

解析试题分析:(1)将代入函数的解析式,然后利用导数求出函数的最大值;(2)先确定函数的解析式,并求出函数的导数,然后利用导数的几何意义将问题转化为,利用恒成立的思想进行求解;(3)将代入函数的解析式并确定函数的解析式,构造新函数,利用导数求出函数的极值,利用极值为零来求出参数的值.
试题解析:(1)依题意,的定义域为
时,
,得,解得
,得,解得.
单调递增,在单调递减;
所以的极大值为,此即为最大值;
(2),则有上有解,


所以当时,取得最小值
(3)因为方程有唯一实数解,所以有唯一实数解,
,则
,所以由
,所以上单调递增,
上单调递减,.
有唯一实数解,则必有

所以当时,方程有唯一实数解.
考点:1.利用导数求函数的最值;2.函数不等式恒成立;3.参数分离法;4.函数的零点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数的图象,且点M到边OA距离为

(1)当时,求直路所在的直线方程;
(2)当为何值时,地块OABC在直路不含泳池那侧的面积取到最大,最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设a为实数,函数f(x)=ex-2x+2a,x∈R.
(Ⅰ)求f(x)的单调区间与极值;
(Ⅱ)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为自然对数的底)
(1)求的最小值;
(2)设不等式的解集为,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某自来水公司要在公路两侧铺设水管,公路为东西方向,在路北侧沿直线铺设线路l1,在路南侧沿直线铺设线路l2,现要在矩形区域ABCD内沿直线将l1与l2接通.已知AB = 60m,BC = 80m,公路两侧铺设水管的费用为每米1万元,穿过公路的EF部分铺设水管的费用为每米2万元,设∠EFB= α,矩形区域内的铺设水管的总费用为W.

(1)求W关于α的函数关系式;
(2)求W的最小值及相应的角α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

【题文】已知函数.
(1)若处取得极大值,求实数的值;
(2)若,求在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某出版社新出版一本高考复习用书,该书的成本为5元/本,经销过程中每本书需付给代理商m元(1≤m≤3)的劳务费,经出版社研究决定,新书投放市场后定价为元/本(9≤≤11),预计一年的销售量为万本.
(1)求该出版社一年的利润(万元)与每本书的定价的函数关系式;
(2)当每本书的定价为多少元时,该出版社一年的利润最大,并求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若,对定义域内任意x,均有恒成立,求实数a的取值范围?
(Ⅲ)证明:对任意的正整数恒成立。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,函数.
(1)若,求函数的极值与单调区间;
(2)若函数的图象在处的切线与直线平行,求的值;
(3)若函数的图象与直线有三个公共点,求的取值范围.

查看答案和解析>>

同步练习册答案