精英家教网 > 高中数学 > 题目详情

如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数的图象,且点M到边OA距离为

(1)当时,求直路所在的直线方程;
(2)当为何值时,地块OABC在直路不含泳池那侧的面积取到最大,最大值是多少?

(1);(2)时,.

解析试题分析:(1)点M到边OA距离为,则可设,当时,求切线的方程是一个常规问题,切线的斜率是处的导数,易求出直线的点斜式方程;(2)要求不含泳池一侧的面积,就是要把这个面积表示为变量的函数,为此需要确定切线与线段的交点,当然也可能是与线段的交点,这作一个判断或分类讨论,面积函数解决后,用一般求最值的方法,则可解决问题.
试题解析:
(1)对函数求导得,,又,所以切点,切线的方程为,即
(2),过切点的切线
,令,故切线于点
,得,又递减,所以
故切线与OC交于点
地块OABC在切线右上部分区域为直角梯形,
面积,当
考点:导数的应用、函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数 
(1)当时,求的单调区间;
(2)若当恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数为定义域上的单调函数,且存在区间(其中,使得当时, 的取值范围恰为,则称函数上的正函数,区间叫做函数的等域区间.
已知上的正函数,求的等域区间;
试探求是否存在,使得函数上的正函数?若存在,请求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)判断函数上的单调性,并用定义加以证明;
(Ⅱ)若对任意,总存在,使得成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是R上的奇函数,当取得极值.
(I)求的单调区间和极大值
(II)证明对任意不等式恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为自然对数的底,
(1)求的最值;
(2)若关于方程有两个不同解,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上为增函数,且,求解下列各题:
(1)求的取值范围;
(2)若上为单调增函数,求的取值范围;
(3)设,若在上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上为增函数,且,求解下列各题:
(1)求的取值范围;
(2)若上为单调增函数,求的取值范围;
(3)设,若在上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)当时,求函数的最大值;
(2)令,其图象上存在一点,使此处切线的斜率,求实数的取值范围;
(3)当时,方程有唯一实数解,求的值.

查看答案和解析>>

同步练习册答案