分析 (Ⅰ)根据数列递推公式可得an-an-1=2(n≥3),继而得到{an}是以2为首项,以2为公差的等差数列,问题得以解决;
(Ⅱ)根据等差数列的求和公式计算即可.
解答 解:(Ⅰ)因为${a_n}^2=4{S_{n-1}}+4n(n≥2)$,①${a_{n-1}}^2=4{S_{n-2}}+4(n-1)(n≥3)$,②
所以①-②得,${a_n}^2-{a_{n-1}}^2=4{a_{n-1}}+4$,
即${a_n}^2={({a_{n-1}}+2)^2}$,
因为an>0,所以an=an-1+2,即an-an-1=2(n≥3),
又由a1=2,${a_n}^2=4{S_{n-1}}+4n$,
得${a_2}^2=4{S_1}+8=16$,所以a2=4,a2-a1=2,
所以{an}是以2为首项,以2为公差的等差数列,
所以an=2+(n-1)×2=2n.
(Ⅱ)由(Ⅰ)知an=2n,
所以a2+a5+a8+…+a89=4+10+16+…+178=$\frac{(4+178)×30}{2}=2730$.
点评 本题考查数列的通项和求和的关系,考查数列的求和方法,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-2≤x<0或3<x≤4} | B. | {x|-2≤x≤0或3≤x≤4} | C. | {x|-2<x≤4} | D. | {x|0<x<3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 8 | C. | 15 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com